Essentials of Chemical Reaction Engineering I Webinar Wednesday, March 9, 2011

- Algorithm for Single Reactions with Conversion for -Batch Reactors (BR)
-Continuous Stirred Tank Reactor (CSTR)
- Plug Flow Reactors (PFR)
- Example: Problem from Professional Engineers

Registration Exam

Pressure drop in Pack Bed Reactors (PBRs), the algorithm for multiple reactions and heat effects will be covered in a later lecture.

An expanded version of the power point slides can be found at http://www.umich.edu/~essen/

Separations

These topics do not build upon one another

Let's Begin CRE

- Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Reaction Rate

- The reaction rate is the rate at which the number of moles of a species looses its chemical identity per unit volume.
- The identity of a chemical species is determined by the kind, number, and configuration of that species' atoms.
- The rate of a reaction ($\mathrm{mol} / \mathrm{dm}^{3} / \mathrm{s}$) can be expressed as :
- The rate of Disappearance of the limiting reactant A: $-r_{A}$ or as
- The rate of Formation (Generation) of product: $\mathbf{r}_{\mathbf{p}}$

Reaction Rate: The Convention

Consider the isomerization

$$
A \rightarrow B
$$

$-r_{A}=$ the rate of a disappearance of species A per unit volume ($+10 \mathrm{~mol} / \mathrm{dm}^{3} / \mathrm{s}$)
$r_{A}=$ the rate of formation of species A per unit volume ($-10 \mathrm{~mol} / \mathrm{dm}^{3} / \mathrm{s}$)
$r_{B}=$ the rate of formation of species B per unit volume (+10 mol/dm ${ }^{3} / \mathrm{s}$)

Reaction Rate

- For a gas-solid catalytic reaction, we refer to $-r_{\boldsymbol{A}}{ }^{\prime}$, as the rate of disappearance of species A per unit mass of catalyst. (mol/gcat/s)

NOTE: $\left(\mathrm{dC}_{\mathrm{A}} / \mathrm{dt}\right)$ is not
the definition of the rate of reaction

Reaction Rate

Consider species j :

1. r_{j} is the rate of formation of species j per unit volume [e.g. $\mathrm{mol} / \mathrm{dm}^{3} \mathrm{~s}$]
2. r_{j} is a function of concentration, temperature, pressure, and the type of catalyst (if any)
3. r_{j} is independent of the type of reaction system (batch, plug flow, etc.)
4. r_{j} is an algebraic equation, not a differential equation

$$
\text { (e.g. }=-r_{A}=k C_{A} \text { or }-r_{A}=k C_{A}^{2} \text {) }
$$

General Mole Balance

General Mole Balance on System Volume V

$$
\begin{aligned}
& \text { In }- \text { Out }+ \text { Generation }=\text { Accumulation } \\
& F_{A 0}-F_{A}+\int r_{A} d V=\frac{d N_{A}}{d t}
\end{aligned}
$$

Batch Reactor Mole Balance

Batch

Well Mixed

$$
\int r_{A} d V=r_{A} V
$$

$$
\frac{d N_{A}}{d t}=r_{A} V
$$

CSTR Mole Balance

$$
F_{A 0}-F_{A}+\int r_{A} d V=\frac{d N_{A}}{d t}
$$

CSTR

CSTR volume necessary to reduce the molar flow rate from $F_{A 0}$ to F_{A}.

Plug Flow Reactor Mole Balance

$$
\begin{aligned}
& \left\lfloor\begin{array}{c}
\text { In } \\
\text { at } \mathrm{V}
\end{array}\right\rfloor-\left\lfloor\begin{array}{c}
\text { Out } \\
\text { at } \mathrm{V}+\Delta \mathrm{V}
\end{array}\right\rfloor+\left\lfloor\begin{array}{c}
\text { Generation } \\
\text { in } \Delta \mathrm{V}
\end{array}\right\rfloor=0 \\
& \left.\mathrm{~F}_{\mathrm{A}}\right|_{\mathrm{V}}-\left.\mathrm{F}_{\mathrm{A}}\right|_{\mathrm{V}+\Delta \mathrm{V}}+\mathrm{r}_{\mathrm{A}} \Delta \mathrm{~V}=0
\end{aligned}
$$

Plug Flow Reactor Mole Balance

Rearrange and take limit as $\Delta \mathrm{V} \rightarrow 0$

$$
\begin{gathered}
\lim _{\Delta V \rightarrow 0} \frac{\left.F_{A}\right|_{V+\Delta V}-\left.F_{A}\right|_{V}}{\Delta V}=r_{A} \\
\frac{d F_{A}}{d V}=r_{A}
\end{gathered}
$$

The integral form is: $\quad V=\int_{F_{A 0}}^{F_{A}} \frac{d F_{A}}{r_{A}}$
This is the volume necessary to reduce the entering molar flow rate ($\mathrm{mol} / \mathrm{s}$) from $\mathrm{F}_{\mathrm{A} 0}$ to the exit molar flow rate of F_{A}.

Packed Bed Reactor Mole Balance Analogous to PFR

Rearrange:

$$
\frac{d F_{A}}{d W}=r_{A}^{\prime}
$$

The integral form to find the catalyst weight is:

$$
W=\int_{F_{A 0}}^{F_{A}} \frac{d F_{A}}{r_{A}^{\prime}}
$$

PBR catalyst weight necessary to reduce the entering molar flow rate $F_{A 0}$ to a molar flow rate F_{A}.

Reactor Mole Balance Summary

Reactor Differential Algebraic Integral

Batch $\quad \frac{d N_{A}}{d t}=r_{A} V$

$$
t=\int_{N_{A 0}}^{N_{A}} \frac{d N_{A}}{r_{A} V}
$$

CSTR

$$
V=\frac{F_{A 0}-F_{A}}{-r_{A}}
$$

PFR $\quad \frac{d F_{A}}{d V}=r_{A}$

$$
V=\int_{F_{A 0}}^{F_{d}} \frac{d F_{A}}{r_{A}} \quad \mathrm{~F}_{\mathrm{A}} \underbrace{}_{\mathrm{V}}
$$

Conversion X

$$
\mathrm{aA}+\mathrm{bB} \longrightarrow \mathrm{cC}+\mathrm{dD}
$$

Choose limiting reactant A as basis of calculation

$$
\mathrm{A}+\frac{\mathrm{b}}{\mathrm{a}} \mathrm{~B} \longrightarrow \frac{\mathrm{c}}{\mathrm{a}} \mathrm{C}+\frac{\mathrm{d}}{\mathrm{a}} \mathrm{D}
$$

$\mathrm{X}=\frac{\text { moles A reacted }}{\text { moles } \mathrm{A} \mathrm{fed}}$

Batch

$$
\begin{aligned}
& {\left[\begin{array}{c}
\text { Moles A } \\
\text { remaining }
\end{array}\right] }=\left[\begin{array}{c}
\text { Moles A } \\
\text { initially }
\end{array}\right]-\left[\begin{array}{c}
\text { Moles A } \\
\text { reacted }
\end{array}\right] \\
& N_{A}=N_{A 0}-N_{A 0} X \\
& d N_{A}=0-N_{A 0} d X \\
& \frac{d N_{A}}{d t}=-N_{A 0} \frac{d X}{d t}=r_{A} V \\
& \frac{d X}{d t}=\frac{-r_{A} V}{N_{A 0}} \\
& t=0 \quad X=0 \quad t=N_{A 0} \int_{0}^{X} \frac{d X}{-r_{A} V}
\end{aligned}
$$

CSTR

$$
\begin{aligned}
{\left[\begin{array}{c}
\text { Moles A } \\
\text { leaving }
\end{array}\right]=} & {\left[\begin{array}{c}
\text { Moles A } \\
F_{A} \\
\text { entering }
\end{array}\right]-\left[\begin{array}{c}
\text { Moles A } \\
\text { reacted }
\end{array}\right] } \\
= & F_{A 0} X=\frac{F_{A 0}-F_{A}}{-r_{A}} \\
V= & \frac{F_{A 0}-\left(F_{A 0}-F_{A 0} X\right)}{-r_{A}} \\
& V=\left(\frac{F_{A 0}}{\left.-r_{A}\right)} X\right.
\end{aligned}
$$

CSTR volume necessary to achieve conversion X.

PFR

$$
\begin{gathered}
\frac{d F_{A}}{d V}=r_{A} \\
F_{A}=F_{A 0}-F_{A 0} X \\
\\
d F_{A}=0-F_{A 0} d X \\
V=0 \\
V=V \\
V=X \quad X=X \quad V=\int_{0}^{X} \frac{F_{A 0}}{-r_{A}} d X
\end{gathered}
$$

Reactor Mole Balances in terms of conversion:Summary

Reactor Differential
Batch $N_{A 0} \frac{d X}{d t}=-r_{A} V$
Algebraic Integral

$$
t=N_{A 0} \int_{0}^{X} \frac{d X}{-r_{A} V}
$$

CSTR

$$
V=\left(\frac{F_{A 0}}{-r_{A}}\right)_{\text {exit }} X
$$

PFR $\quad F_{A 0} \frac{d X}{d V}=-r_{A}$

$$
V=\int_{0}^{X} \frac{F_{A 0}}{-r_{A}} d X
$$

PBR $\quad F_{A 0} \frac{d X}{d W}=-r_{A}^{\prime}$

$$
W=\int_{0}^{X} \frac{F_{A 0}}{-r_{A}^{\prime}} d X
$$

Levenspiel Plots

Reactor Sizing

$$
V=\int_{0}^{X} \frac{F_{A 0}}{-r_{A}} d X \quad V=\left(\frac{F_{A 0}}{-r_{A}}\right)_{\text {exit }} X
$$

Just suppose we were given $-r_{A}$ as a function of conversion, $-r_{A}=f(X)$, then we could size any CSTR or PFR at the same conditions by constructing a Levenspiel plot of ($F_{A 0} /-r_{A}$) as a function of X i.e.,

$$
\frac{\mathrm{F}_{\mathrm{A} 0}}{-\mathrm{r}_{\mathrm{A}}}=\mathrm{g}(\mathrm{X})
$$

The volume of a CSTR and the volume of a PFR can be represented as the shaded areas in the Levenspiel Plots shown as:

Levenspiel Plots

How to find $-r_{A}=f(x)$

Step 1: Rate Law

$$
-\mathrm{r}_{\mathrm{A}}=\mathrm{g}\left(\mathrm{C}_{\mathrm{i}}\right)
$$

Step 2: Stoichiometry

$$
\left(C_{i}\right)=h(X)
$$

Step 3: Combine to get $\quad-r_{A}=f(X)$

Reaction Engineering

These topics build upon one another

Rate Laws - Power Law Model

$-\mathrm{r}_{\mathrm{A}}=\mathrm{kC}_{\mathrm{A}}^{\alpha} \mathrm{C}_{\mathrm{B}}^{\beta} \quad \alpha$ order in A

β order in B

Overall Rection Order $=\alpha+\beta$
A reaction follows an elementary rate law if the reaction orders just happen to agree with the stoichiometric coefficients for the reaction as written.

$$
2 \mathrm{~A}+\mathrm{B} \rightarrow 3 \mathrm{C}
$$

e.g. If the above reaction follows an elementary rate law

$$
-\mathrm{r}_{\mathrm{A}}=\mathrm{k}_{\mathrm{A}} \mathrm{C}_{\mathrm{A}}^{2} \mathrm{C}_{\mathrm{B}}
$$

2 nd order in A, 1st order in B, overall $3^{\text {rd }}$ order

Non Elementary Rate Laws

$2 \mathrm{~A}+\mathrm{B} \rightarrow 3 \mathrm{C}$
If $-r_{A}=k_{A} C_{A}^{2}$
) Second Order in A
, Zero Order in B
, Overall Second Order

Reversible Reaction

$2 \mathrm{~A}+\mathrm{B} \underset{\rightleftarrows}{\rightleftarrows} 3 \mathrm{C}$

Elementary

$$
\begin{aligned}
-r_{A} & =k_{A} C_{A}^{2} C_{B}-k_{-A} C_{C}^{3} \\
& =k_{A}\left[C_{A}^{2} C_{B}-\frac{C_{C}^{3}}{k_{A} / k_{-A}}\right] \\
& =k_{A}\left[C_{A}^{2} C_{B}-\frac{C_{C}^{3}}{K_{e}}\right]
\end{aligned}
$$

Table 3-1 Example of Reaction Rate Laws

A. First-Order Rate Laws
(1)

$$
\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}
$$

$$
-r_{\mathrm{A}}=k C_{\mathrm{C}_{2} \mathrm{H}_{6}}
$$

(2)

$$
-r_{\mathrm{A}}=k C_{\phi \mathrm{N}=\mathrm{NC} 1}
$$

(3)

$$
-r_{\mathrm{A}}=k C_{\mathrm{CH}_{2} \mathrm{OCH}}^{2}
$$

(4)

$$
\mathrm{CH}_{3} \mathrm{COCH}_{3} \longrightarrow \mathrm{CH}_{2} \mathrm{CO}+\mathrm{CH}_{4}
$$

$$
-r_{\mathrm{A}}=k C_{\mathrm{CH}_{3} \mathrm{COCH}_{3}}
$$

$$
\begin{equation*}
n \mathrm{C}_{4} \mathrm{H}_{10} \rightleftarrows i \mathrm{C}_{4} \mathrm{H}_{10} \tag{5}
\end{equation*}
$$

$$
-r_{n}=k\left[C_{n \mathrm{C}_{4}}-C_{i \mathrm{C}_{4}} / K_{\mathrm{C}}\right]
$$

B. Second-Order Rate Laws
(1)

$$
-r_{\mathrm{A}}=k_{\mathrm{ONCB}} C_{\mathrm{ONCB}} C_{\mathrm{NH}_{3}}^{\dagger}
$$

(2)
$\mathrm{CNBr}+\mathrm{CH}_{3} \mathrm{NH}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{NCNH}_{2}$

$$
-r_{\mathrm{A}}=k C_{\mathrm{CNBr}} C_{\mathrm{CH}_{3} \mathrm{NH}_{2}}
$$

(3)
C. Nonelementary Rate Laws
(1) Homogeneous

$$
\mathrm{CH}_{3} \mathrm{CHO} \longrightarrow \mathrm{CH}_{4}+\mathrm{CO}
$$

$$
-r_{\mathrm{CH}_{3} \mathrm{CHO}}=k C_{\mathrm{CH}_{3} \mathrm{CHO}}^{3 / 2}
$$

(2) Heterogeneous
$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

$$
-r_{\mathrm{C}}=\frac{k\left[P_{\mathrm{C}}-P_{\mathrm{B}} P_{\mathrm{P}} / K_{\mathrm{P}}\right]}{1+K_{\mathrm{B}} P_{\mathrm{B}}+K_{\mathrm{C}} P_{\mathrm{C}}}
$$

Arrhenius Equation

$$
k=A e^{-E / R T}
$$

$\mathrm{E}=$ Activation energy (cal/mol)
R = Gas constant (cal/mol*K)
$\mathrm{T}=$ Temperature (K)
A = Frequency factor (same units as rate constant k)
(units of A, and k, depend on overall reaction order)

$$
\ln k_{\mathrm{A}}=\ln A-\frac{E}{R}\left(\frac{1}{T}\right) \quad \text { Low } \mathrm{E}
$$

How to find $-r_{A}=f(x)$

Step 1: Rate Law

$$
-\mathrm{r}_{\mathrm{A}}=\mathrm{g}\left(\mathrm{C}_{\mathrm{i}}\right)
$$

Step 2: Stoichiometry $\quad\left(\mathrm{C}_{\mathrm{i}}\right)=\mathrm{h}(\mathrm{X})$

Step 3: Combine to get $\quad-r_{A}=f(X)$

Reaction Engineering

These topics build upon one another

We shall set up Stoichiometry Tables to express the concentration as a function of conversion then combine $C_{i}=f(X)$ with the appropriate rate law to obtain $-r_{A}=f(X)$.

$$
\mathrm{A}+\frac{\mathrm{b}}{\mathrm{a}} \mathrm{~B} \rightarrow \frac{\mathrm{c}}{\mathrm{a}} \mathrm{C}+\frac{\mathrm{d}}{\mathrm{a}} \mathrm{D}
$$

A is the Limiting Reactant.

Flow System Stochiometric Table

Species
A
Symbol
A
Reactor Feed

B
B
$\mathrm{F}_{\mathrm{BO}}=\mathrm{F}_{\mathrm{A} 0} \Theta_{\mathrm{B}}$
Change
Reactor Effluent
$\mathrm{F}_{\mathrm{AO}} \quad-\mathrm{F}_{\mathrm{AO}} \mathrm{X}$

$$
F_{A}=F_{A 0}(1-X)
$$

C
C
$\mathrm{F}_{\mathrm{CO}}=\mathrm{F}_{\mathrm{A} 0} \Theta_{\mathrm{C}}$
$-b / a F_{A 0} X$
$\mathrm{F}_{\mathrm{B}}=\mathrm{F}_{\mathrm{A} 0}\left(\Theta_{\mathrm{B}}-\mathrm{b} / \mathrm{aX}\right)$

D
$\mathrm{F}_{\mathrm{D} 0}=\mathrm{F}_{\mathrm{A} 0} \Theta_{\mathrm{D}}$
$+c / a F_{A 0} X$
$\mathrm{F}_{\mathrm{C}}=\mathrm{F}_{\mathrm{AO}}\left(\Theta_{\mathrm{C}}+\mathrm{c} / \mathrm{aX}\right)$
D
I
$\frac{\mathrm{F}_{10}=\mathrm{F}_{\mathrm{AO}} \Theta_{\text {I }}}{\mathrm{F}_{\mathrm{TO}}}$
$+\mathrm{d} / \mathrm{aF}_{\mathrm{A0}} \mathrm{X}$
$F_{D}=F_{A 0}\left(\Theta_{D}+d / a X\right)$
Inert

$\frac{\mathrm{F}_{\mathrm{I}}=\mathrm{F}_{\mathrm{AO}} \Theta_{\mathrm{I}}}{\mathrm{F}_{\mathrm{T}}=\mathrm{F}_{\mathrm{TO}}+\delta \mathrm{F}_{\mathrm{AO}} \mathrm{X}}$

Where: $\Theta_{i}=\frac{F_{i 0}}{F_{A 0}}=\frac{C_{i 0} v_{0}}{C_{A 0} v_{0}}=\frac{C_{i 0}}{C_{A 0}}=\frac{y_{i 0}}{y_{A 0}} \quad$ and
$\delta=\frac{d}{a}+\frac{c}{a}-\frac{b}{a}-1=\frac{\text { Change in total number of moles }}{\text { Mole of A reacted }}$

Concentration Flow System: $\quad C_{A}=\frac{F_{A}}{v}$
Liquid Phase Flow System:
$v=v_{0}$
Liquid Systems

$$
\begin{aligned}
& C_{A}=\frac{F_{A}}{v}=\frac{F_{A 0}(1-X)}{v_{0}}=C_{A 0}(1-X) \\
& C_{B}=\frac{F_{B}}{v}=\frac{F_{A 0}}{v_{0}}\left(\Theta_{B}-\frac{b}{a} X\right)=C_{A 0}\left(\Theta_{B}-\frac{b}{a} X\right)
\end{aligned}
$$

Equimolar feed:

$$
\Theta_{B}=1
$$

Stoichiometric feed: $\Theta_{B}=\frac{b}{a}$

Liquid Systems

If the rate of reaction were $-r_{A}=k C_{A} C_{B}$
then we would have $-\mathrm{r}_{\mathrm{A}}=\mathrm{C}_{\mathrm{A} 0}{ }^{2}(1-\mathrm{X})\left(\Theta_{\mathrm{B}}-\frac{\mathrm{b}}{\mathrm{a}} \mathrm{X}\right)$
This gives us $-r_{A}=f(X)$

For Gas Phase Flow Systems

Combining the compressibility factor equation of state with $\mathrm{Z}=\mathrm{Z}_{0}$
Stoichiometry:

$$
\begin{aligned}
& C_{T}=\frac{P}{Z R T} \\
& C_{T 0}=\frac{P_{0}}{Z_{0} R T_{0}} \\
& C_{T}=\frac{F_{T}}{\nu} \\
& C_{T 0}=\frac{F_{T 0}}{v_{0}} \\
& \frac{C_{T}}{C_{T 0}}=\frac{\left(F_{T} / v\right)}{\left(F_{T 0} / v_{0}\right)}=\frac{(P / Z R T)}{\left(P_{0} / Z_{0} R T_{0}\right)} \\
& v=v_{0} \frac{F_{T}}{F_{T 0}} \frac{P_{0}}{P} \frac{T}{T_{0}}
\end{aligned}
$$

We obtain:

For Gas Phase Flow Systems: Conversion

$$
v=v_{0} \frac{\mathrm{~F}_{\mathrm{T}}}{\mathrm{~F}_{\mathrm{T} 0}} \frac{\mathrm{P}_{0}}{\mathrm{P}} \frac{\mathrm{~T}}{\mathrm{~T}_{0}}
$$

The total molar flow rate is:
Substituting F_{T} gives: $\quad v=v_{0}\left(\frac{F_{T 0}+F_{A 0} \delta X}{F_{T 0}}\right) \frac{T}{T_{0}} \frac{P_{0}}{P}$

$$
v=v_{0}\left(1+\frac{\mathrm{F}_{\mathrm{A} 0}}{\mathrm{~F}_{\mathrm{T} 0}} \delta X\right) \frac{\mathrm{T}}{\mathrm{~T}_{0}} \frac{\mathrm{P}_{0}}{\mathrm{P}}
$$

$$
v=v_{0}\left(1+y_{A 0} \delta X\right) \frac{\mathrm{T}}{\mathrm{~T}_{0}} \frac{\mathrm{P}_{0}}{\mathrm{P}}
$$

$$
v=v_{0}(1+\varepsilon X) \frac{T}{T_{0}} \frac{P_{0}}{P}
$$

For Gas Phase Flow Systems: Conversion

where

$$
v=v_{0}(1+\varepsilon X) \frac{T}{T_{0}} \frac{P_{0}}{P}
$$

$$
\begin{gathered}
\varepsilon=\frac{F_{A 0}}{F_{T 0}}\left(\frac{d}{a}+\frac{c}{a}-\frac{b}{a}-1\right)=y_{A 0} \delta \\
\varepsilon=y_{A 0} \delta
\end{gathered}
$$

$\varepsilon=\frac{\text { change in total number of moles for complete conversion }}{\text { total number of moles fed to the reactor }}$

For Gas Phase Flow Systems: Conversion

Concentration Flow System: $C_{A}=\frac{F_{A}}{v}$

Gas Phase Flow System: $\quad v=v_{0}(1+\varepsilon X) \frac{T}{T_{0}} \frac{P_{0}}{P}$

$$
\begin{aligned}
& C_{A}=\frac{F_{A}}{v}=\frac{F_{A_{0}}(1-X)}{v_{0}(1+\varepsilon X)} \frac{T_{0} P_{0}}{T_{0}}=\frac{C_{A 0}(1-X) \frac{T_{0}}{(1+\varepsilon X)} \frac{P}{T} \frac{P_{0}}{P_{0}}}{C_{B}=\frac{F_{B}}{v}=\frac{F_{A 0}\left(\Theta_{B}-\frac{b}{a} X\right)}{v_{0}(1+\varepsilon X)} \frac{C_{A 0}\left(\Theta_{\mathrm{B}}-\frac{b}{a} X\right)}{T_{0}} \frac{P_{0}}{a}=\frac{T_{0}}{T} \frac{P}{P_{0}}}
\end{aligned}
$$

- If constant temperature and no pressure drop

$$
\begin{aligned}
& C_{A}=\frac{F_{A}}{v}=\frac{F_{A 0}(1-X)}{v_{0}(1+\varepsilon X)}=\frac{C_{A 0}(1-X)}{(1+\varepsilon X)} \\
& C_{B}=\frac{F_{B}}{v}=\frac{F_{A 0}\left(\Theta_{B}-\frac{b}{a} X\right)}{v_{0}(1+\varepsilon X)}=\frac{C_{A 0}\left(\Theta_{B}-\frac{b}{a} X\right)}{(1+\varepsilon X)}
\end{aligned}
$$

For Gas Phase Flow Systems: Conversion If $-r_{A}=k C_{A} C_{B}$, and Isothermal and isobaric

$$
-r_{A}=k_{A} C_{A 0}^{2}\left[\frac{(1-X)}{(1+\varepsilon X)} \frac{\left(\Theta_{B}-\frac{b}{a} X\right)}{(1+\varepsilon X)}\right]
$$

This gives us

Reaction Engineering

These topics build upon one another

Le Cataliste Fiambé
344 Champs Elysten

$$
\text { Menue à } 220 \mathscr{F} \mathscr{F}
$$

Afpelizer
Pate de Canard (supplément 15FF)
Coquilles Saint-dacques
Potage Crìme de Cresson
Escargots ì La Bourgunigmomme (suppifement 15 FFF
\&inlxée
Cassonflet
Ragnoms de Veaur Cogy ane Vir
Boeuf à la provemçale
(Tous mos plats somt garmis)
Dessert
Brie on Crime Amglaise
$1 / 2$ bouteille do win blame on vin rouge

Mole Balance
Elatch Reanctor CSTR PFRRPER Semibatch Reactor
Rale Law Power Law (e.g.) Ist Oraler 2nd Oraler Nom-Integer Order

Sloichiomelry
Gass or Lifquid

Combine
Mix together and diggest with $1 / 2$ bouteille of POLYMATH

Sonvice Compris

Part 1: Mole Balances in Terms of

 ConversionAlgorithm for Isothermal Reactor Design

1. Mole Balance and Design Equation
2. Rate Law
3. Stoichiometry
4. Combine
5. Evaluate
A. Graphically (Levenspiel plots)
B. Numerical (Quadrature Formulas)
C. Analytical (Integral Tables)
D. Software Packages (Polymath)

CSTR Laboratory Experiment

Example: $\left(\mathrm{CH}_{2} \mathrm{CO}\right)_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{CH}_{3} \mathrm{COOH}$

$$
A+B \rightarrow 2 C
$$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{A} 0}=1 \mathrm{M} \\
& \mathrm{C}_{\mathrm{B} 0} \\
& \mathrm{~V}=1.2 \mathrm{M} \mathrm{dm}^{3} \\
& v_{0}=3.3 \cdot 10^{-3} \frac{\mathrm{dm}^{3}}{\mathrm{~s}} \\
& \tau \frac{\mathrm{~V}}{v_{0}} \\
&= \frac{1 \mathrm{dm}^{3}}{3.3 \times 10^{-3} \frac{\mathrm{dm}^{3}}{\mathrm{~s}}}=303 \mathrm{~s}
\end{aligned}
$$

CSTR Laboratory Experiment

1) Mole Balance:
2) Rate Law:
3) Stoichiometry:
A
$\mathrm{F}_{\mathrm{A} 0}$
$-F_{A 0} X$
$\mathrm{F}_{\mathrm{A}}=\mathrm{F}_{\mathrm{A} 0}(1-\mathrm{X})$
B

$$
F_{A 0} \Theta_{B}
$$

$-F_{A 0} X$
$\mathrm{F}_{\mathrm{B}}=\mathrm{F}_{\mathrm{A} 0}\left(\Theta_{\mathrm{B}}-\mathrm{X}\right)$
C

$$
\begin{gathered}
0 \quad 2 F_{A 0} X \quad F_{C}=2 F_{A 0} X \\
C_{A}=\frac{F_{A}}{v}=\frac{F_{A 0}(1-X)}{v_{0}}=C_{A 0}(1-X)
\end{gathered}
$$

CSTR Laboratory Experiment

3) Stoichiometry (cont'd):

$$
\begin{aligned}
& C_{A}=\frac{F_{A}}{v}=\frac{F_{A 0}(1-X)}{v_{0}}=C_{A 0}(1-X) \\
& C_{B}=\frac{F_{A 0}\left(\Theta_{B}-X\right)}{v_{0}}=C_{A 0}\left(\Theta_{B}-X\right) \\
& \Theta_{B}=\frac{51.2}{1}=51.2 \\
& C_{B}=C_{A 0}(51.2-X) \approx C_{A 0}(51.2) \approx C_{B 0} \\
& -r_{A}=\text { 个 }_{A 2} C_{B 0} C_{A 0}(1-X)=k C_{A 0}(1-X), k=0.01 \mathrm{~s}^{-1}
\end{aligned}
$$

CSTR Laboratory Experiment

1) Mole Balance: \quad CSTR: $\quad V=\frac{F_{A 0} X}{-r_{A}}$

$$
\begin{aligned}
& V=\frac{v_{0} C_{A 0} X}{k C_{A 0}(1-X)} \Rightarrow \frac{V}{v_{0}}=\frac{X}{k(1-X)} \Rightarrow \tau=\frac{V}{v_{0}}=\frac{X}{k(1-X)} \\
& X=\frac{\tau k}{1+\tau k} \\
& \tau k=(303 s)\left(0.01 \mathrm{~s}^{-1}\right)=3.03 \\
& X=\frac{3.03}{4.03}=0.75
\end{aligned}
$$

General Guidelines for California Problems

Some hints:

1. Group unknown parameters/values on the same side of the equation
example: [unknowns] = [knowns]
2. Look for a Case 1 and a Case 2 (usually two data points) to make intermediate calculations
3. Take ratios of Case 1 and Case 2 to cancel as many unknowns as possible
4. Carry all symbols to the end of the manipulation before evaluating, UNLESS THEY ARE ZERO

California Professional Engineers Exam is not curved, 75\% or better to pass.

California Profession Engineers Exam

The irreversible elementary gas phase reaction takes place in an isothermal plug-flow reactor. Reactant A and a diluent I are fed in an equimolar ratio and the conversion of A is 80\%.

If the molar feed rate of A is cut in half, what is the conversion of A assuming that the feed rate of I is left unchanged?
When $\mathrm{F}_{\mathrm{A} 01}=\mathrm{F}_{\mathrm{IO}}$ thenX=0.8

$$
\mathrm{F}_{\mathrm{A} 02}=0.5 \mathrm{~F}_{\mathrm{A} 01}=0.5 \mathrm{~F}_{\mathrm{I} 0} \longrightarrow \quad 2 A \rightarrow B \quad \mathrm{X}=\text { ? }
$$

Unknown: $\quad \mathrm{V}, \mathrm{k}, \mathrm{T}, \mathrm{P}, \mathrm{C}_{\mathrm{A} 0}, \mathrm{~F}_{\mathrm{A} 0}, \mathrm{~F}_{\mathrm{I} 0}, \mathrm{~V}_{0}$

Gas Phase PFR

Will the conversion increase or decrease?
INCREASE: Slower Volumetric Rate (Reactants spend more time in the reactor)

DECREASE: Concentration of Reactant Diluted

Gas Phase PFR

Assumptions:

$$
\begin{aligned}
& \mathrm{T}=\mathrm{T}_{0}, \mathrm{P}=\mathrm{P}_{0}, \mathrm{~V}_{1}=\mathrm{V}_{2}, \\
& \mathrm{k}_{1}=\mathrm{k}_{2}, \mathrm{P}_{1}=\mathrm{P}_{2}, \mathrm{C}_{\mathrm{T} 01}=\mathrm{C}_{\mathrm{T} 02}
\end{aligned}
$$

1) Mole Balance:

$$
\frac{\mathrm{dX}}{\mathrm{dV}}=\frac{-\mathrm{r}_{\mathrm{A}}}{\mathrm{~F}_{\mathrm{A} 0}}
$$

2) Rate Law:

$$
-\mathrm{r}_{\mathrm{A}}=\mathrm{kC} \mathrm{C}_{\mathrm{A}}^{2}
$$

3) Stoichiometry: (gas phase) $T=T_{0}, P=P_{0}, \therefore v=v_{0}(1+\varepsilon X)$

$$
\mathrm{A} \rightarrow 1 / 2 \mathrm{~B}
$$

Gas Phase PFR

$$
\begin{gathered}
\mathrm{A} \rightarrow \frac{1}{2} \mathrm{~B} \\
\delta=\frac{1}{2}-1=-\frac{1}{2} \\
\varepsilon_{1}=\mathrm{y}_{\mathrm{A} 01} \delta=\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)=-\frac{1}{4} \\
\varepsilon_{2}=\mathrm{y}_{\mathrm{A} 02} \delta=\left(\frac{1}{3}\right)\left(-\frac{1}{2}\right)=-\frac{1}{6} \\
\mathrm{C}_{\mathrm{A}}=\frac{\mathrm{C}_{\mathrm{A} 0}(1-\mathrm{X})}{(1+\varepsilon \mathrm{X})}
\end{gathered}
$$

Gas Phase PFR

4) Combine:

$$
\begin{aligned}
& -r_{A}=k C_{A}^{2}=-r_{A}=k C_{A 0}^{2}\left(\frac{(1+X)}{(1+\varepsilon X)}\right)^{2} \\
& \frac{d X}{d V}=\frac{k C_{A 0}^{2}}{F_{A 0}}\left(\frac{(1-X)}{(1+\varepsilon X)}\right)^{2} \\
& V=\frac{F_{A 0}}{k C_{A 0}^{2}} \int_{0}^{X}\left(\frac{(1+\varepsilon X)}{(1-X)}\right)^{2} d X \\
& \frac{k C_{A 0}^{2} V}{F_{A 0}}=2 \varepsilon(1+\varepsilon) \ln (1-X)+\varepsilon^{2} X+(1+\varepsilon)^{2} \frac{X}{1-X}
\end{aligned}
$$

Gas Phase PFR

Case 1: $\quad \varepsilon_{1}=-\frac{1}{4}, X=0.5$

$$
\frac{V k C_{A 01}^{2}}{F_{A 01}}=2\left(-\frac{1}{4}\right)\left(1-\frac{1}{4}\right) \ln (1-0.8)+\left(\frac{1}{4}\right)^{2}(0.8)+\left(1-\frac{1}{4}\right)^{2} \frac{0.8}{1-0.8}=2.9
$$

Case 2:

$$
\begin{aligned}
& \varepsilon_{2}=-\frac{1}{6}, X_{2}=? \\
& \left.\quad 644444444^{\text {mg }(X) 4}\right) 444444.8 \\
& \frac{k C_{A 02}^{2} V}{F_{A 02}}= \\
& =2 \varepsilon_{2}\left(1+\varepsilon_{2}\right) \ln \left(1-X_{2}\right)+\varepsilon_{2}^{2} X_{2}+\left(1+\varepsilon_{2}\right)^{2} \frac{X_{2}}{1-X_{2}}
\end{aligned}
$$

Take ratio of Case 2 to Case 1

$$
\frac{\text { Case } 2}{\text { Case } 1}=\frac{\frac{\mathrm{kC}_{\mathrm{A} 02}^{2} \mathrm{~V}}{\mathrm{~F}_{\mathrm{A} 02}}}{\frac{\mathrm{kC}_{\mathrm{A} 01}^{2} \mathrm{~V}}{\mathrm{~F}_{\mathrm{A} 01}}}=\frac{2 \varepsilon_{2}\left(1+\varepsilon_{2}\right) \ln \left(1-\mathrm{X}_{2}\right)+\varepsilon_{2}^{2} \mathrm{X}_{2}+\left(1+\varepsilon_{2}\right)^{2} \frac{\mathrm{X}_{2}}{1-\mathrm{X}_{2}}}{2 \varepsilon_{1}\left(1+\varepsilon_{1}\right) \ln \left(1-\mathrm{X}_{1}\right)+\varepsilon_{1}^{2} \mathrm{X}_{1}+\left(1+\varepsilon_{1}\right)^{2} \frac{\mathrm{X}_{1}}{1-\mathrm{X}_{1}}}
$$

Gas Phase PFR

Must make this assumption to keep pressure the same, $\mathrm{C}_{\mathrm{T} 02}=\mathrm{C}_{\mathrm{T} 01}$ $\begin{aligned} \frac{\left(\frac{C_{A 02}^{2}}{F_{A 02}}\right)}{1\left(\frac{C_{A 01}^{2}}{F_{A 01}}\right)} & =\left(\frac{C_{A 02}}{C_{A 01}}\right)^{2}\left(\frac{F_{A 01}}{F_{A 02}}\right)=\left(\frac{y_{A 02}}{y_{A 01}} \frac{C_{T}}{X}\right. \\ & =\left(\frac{y_{A 02}}{y_{A 01}}\right)^{2}\left(\frac{F_{A 01}}{F_{A 02}}\right)=\frac{\operatorname{RHS}\left(X_{2}\right)}{2.9}\end{aligned}$

$$
\begin{gathered}
y_{\mathrm{A} 01}=\frac{1}{2} \quad y_{\mathrm{A} 02}=\frac{1}{3} \quad \frac{\mathrm{~F}_{\mathrm{A} 02}}{\mathrm{~F}_{\mathrm{A} 01}}=\frac{1}{2} \\
\frac{\operatorname{RHS}\left(\mathrm{X}_{2}\right)}{2.9}=\left(\frac{2}{3}\right)^{2}\left(\frac{1}{(1 / 2)}\right)=\frac{8}{9}
\end{gathered}
$$

Gas Phase PFR

$$
\begin{gathered}
\left(\frac{8}{9}\right)(2.9)=2.58=2 \varepsilon_{2}\left(1+\varepsilon_{2}\right) \ln \left(1-X_{2}\right)+\varepsilon_{2}^{2} X_{2}+\left(1+\varepsilon_{2}\right)^{2} \frac{X_{2}}{1-X_{2}} \\
\varepsilon_{2}=y_{A 02} \delta=\frac{-1}{6}
\end{gathered}
$$

$$
2.58=2\left(-\frac{1}{6}\right)\left(1-\frac{1}{6}\right) \ln \left(1-X_{2}\right)+\left(-\frac{1}{6}\right)^{2} X_{2}+\left(1-\frac{1}{6}\right)^{2} \frac{X_{2}}{1-X_{2}}
$$

One equation and one unknown. Solve trial and error or with computer to find: $\mathrm{X}=\mathbf{0 . 7 5 8}$

Please note: In the following material you will find one more example of a gas phase reaction with volume change and the algorithm for membrane reactors and multiple reactions.

For Gas Phase Flow Systems

$$
\begin{aligned}
& C_{A}=\frac{F_{A}}{v}=\frac{F_{A}}{v_{0}\left(\frac{F_{T}}{F_{0}}\right)}\left(\frac{P}{P_{0}}\right)\left(\frac{T_{0}}{T}\right)=\frac{F_{T 0}}{v_{0}}\left(\frac{F_{A}}{F_{T}}\right)\left(\frac{P}{P_{0}}\right)\left(\frac{T_{0}}{T}\right) \\
& C_{A}=C_{T 0}\left(\frac{F_{A}}{F_{T}}\right)\left(\frac{P}{P_{0}}\right)\left(\frac{T_{0}}{T}\right) \\
& C_{T 0}=\frac{F_{T 0}}{v_{0}} \\
& C_{B}=C_{T 0}\left(\frac{F_{B}}{F_{T}}\right)\left(\frac{P}{P_{0}}\right)\left(\frac{T_{0}}{T}\right)
\end{aligned}
$$

Why is there an Activation Energy?

For the reaction to occur, the reactants must overcome an energy barrier or activation energy E_{A}. The energy to overcome their barrier comes from the transfer to the kinetic energy from molecular collisions into internal energy (e.g. Vibrational Energy).

1. The molecules need energy to disort or stretch their bonds in order to break them and thus form new bonds
2. As the reacting molecules come close together they must overcome both stearic and electron repulsion forces in order to react.

- Examples:

Gas Phase : PFR and Batch Calculation

$$
\begin{aligned}
2 \mathrm{NOCl} & \rightarrow 2 \mathrm{NO}+\mathrm{Cl}_{2} \\
2 \mathrm{~A} & \rightarrow 2 \mathrm{~B}+\mathrm{C}
\end{aligned}
$$

Pure NOCl fed with $\mathrm{C}_{\text {Nocl } 1,0}=0.2 \mathrm{~mol} / \mathrm{dm}^{3}$ follows an elementary rate law with $\mathrm{k}=0.29 \mathrm{dm}^{3} / \mathrm{mol} \bullet \mathrm{s}$)

PFR with $\mathrm{v}_{0}=10 \mathrm{dm}^{3} / \mathrm{s}$
Find reactor volume, V and tau for $\mathrm{X}=0.9$

Example: Gas Flow PFR

$$
\begin{aligned}
& 2 \mathrm{NOCl} \rightarrow 2 \mathrm{NO}+\mathrm{Cl}_{2} \\
& 2 \mathrm{~A} \rightarrow 2 \mathrm{~B}+\mathrm{C} \\
& v_{0}=10 \frac{d m^{3}}{s} \\
& T=T_{0} \\
& k=0.29 \frac{\mathrm{dm}^{3}}{\mathrm{~mol} \cdot \mathrm{~s}} \\
& C_{A 0}=0.2 \frac{\mathrm{~mol}}{\mathrm{dm}^{3}} \\
& P=P_{0} \\
& X=0.9 \\
& \text { 1) Mole Balance: } \\
& \frac{d X}{d V}=\frac{-r_{A}}{F_{A 0}} \\
& -r_{A}=k C_{A}^{2}
\end{aligned}
$$

Example: Gas Flow PFR

3) Stoich: Gas $T=T_{0}, P=P_{0} \therefore$

$$
\begin{gathered}
v=v_{0}(1+\varepsilon X) \\
\mathrm{C}_{\mathrm{A}}=\frac{\mathrm{F}_{\mathrm{A}}}{v}=\frac{\mathrm{F}_{\mathrm{A} 0}(1-\mathrm{X})}{v_{0}(1+\varepsilon \mathrm{X})}=\frac{\mathrm{C}_{\mathrm{A} 0}(1-\mathrm{X})}{(1+\varepsilon \mathrm{X})} \\
\mathrm{A} \rightarrow \mathrm{~B}+\mathrm{C} / 2
\end{gathered}
$$

4) Combine: $\quad-r_{\mathrm{A}}=\mathrm{kC}_{\mathrm{A}}^{2}=\frac{\mathrm{kC}_{\mathrm{A} 0}^{2}(1-\mathrm{X})^{2}}{(1+\varepsilon \mathrm{X})^{2}}$

$$
\begin{gathered}
\frac{d X}{d V}=\frac{-r_{A}}{F_{A 0}}=\frac{\mathrm{kC}_{A 0}^{2}(1-X)^{2}}{C_{A 0 v_{0}}(1+\varepsilon X)^{2}} \\
\Rightarrow \int_{0}^{X} \frac{(1+\varepsilon X)^{2}}{(1-X)^{2}} d X=\int_{0}^{\mathrm{V}} \frac{\mathrm{kC}_{A 0}}{v_{0}} d V=\frac{\mathrm{kC}_{A 0} V}{v_{0}}=\mathrm{kC}_{A 0} \tau
\end{gathered}
$$

Example: Gas Flow PFR

$$
\begin{gathered}
k C_{A 0} \tau=2 \varepsilon(1+\varepsilon) \ln (1-X)+\varepsilon^{2} X+\frac{(1+\varepsilon)^{2} X}{1-X} \\
\mathrm{~A} \rightarrow \mathrm{~B}+\mathrm{C} / 2 \\
\varepsilon=y_{A 0} \delta=(1)\left(\frac{1}{2}+1-1\right)=\frac{1}{2} \quad, \quad X=0.9 \\
k C_{A 0} \tau=17.02 \\
\tau=\frac{17.02}{k C_{A 0}}=294 \mathrm{sec} \\
V=v_{0} \tau=2940 \mathrm{dm}^{3}
\end{gathered}
$$

Rate Law
(1) Write mole balance on each species. ${ }^{\dagger}$

$$
\text { e.g., } \frac{d F_{\mathrm{A}}}{d V}=r_{\mathrm{A}}, \frac{d F_{\mathrm{B}}}{d V}=r_{\mathrm{B}}, \frac{d F_{\mathrm{C}}}{d V}=r_{\mathrm{C}}
$$

(2) Write rate law in terms of concentration.

$$
\text { e.g., }-r_{\mathrm{A}}=k_{\mathrm{A}}\left(C_{\mathrm{A}} C_{\mathrm{B}}^{2}-\frac{C_{\mathrm{C}}}{K_{\mathrm{C}}}\right)
$$

Relative Rates
(4) (a) Write the concentrations in terms of molar flow rates for isothermal gas-phase reactions.

$$
\begin{aligned}
\text { e.g., } \quad C_{\mathrm{A}}= & C_{\mathrm{T} 0} \frac{F_{\mathrm{A}}}{F_{\mathrm{T}}} \frac{P}{P_{0}}, C_{\mathrm{B}}=C_{\mathrm{TO}} \frac{F_{\mathrm{B}}}{F_{\mathrm{T}}} \frac{P}{P_{0}} . \\
& \text { with } F_{\mathrm{T}}=F_{\mathrm{A}}+F_{\mathrm{B}}+F_{\mathrm{C}}
\end{aligned}
$$

(b) For liquid-phase reactions, use concentration, e.g., $C_{\mathrm{A}}, C_{\mathrm{B}}$
(5) Write the gas-phase pressure drop term in terms of molar flow rates.

$$
\frac{d y}{d W}=-\frac{\alpha}{2 y} \frac{F_{\mathrm{T}}}{F_{\mathrm{T}_{0}}}, \text { with } y=\frac{P}{P_{0}}
$$

Combine
(6) Use an ODE solver or a nonlinear equation solver (e.g., Polymath) to combine Steps (1) through (5) to solve for, for example, the profiles of molar flow rates, concentration, and pressure.
\dagger For PBR, use $\frac{d F_{\mathrm{A}}}{d W}=r_{\mathrm{A}}, \frac{d F_{\mathrm{B}}}{d W}=r_{\mathrm{B}}, \frac{d F_{\mathrm{C}}}{d W}=r_{\mathrm{C}}$.

$$
\mathrm{A}+2 \mathrm{~B} \rightleftarrows \mathrm{C}
$$

Mole Balance

Rate Law
(1) Write mole balance on each species. ${ }^{\dagger}$

$$
\text { e.g., } \frac{d F_{\mathrm{A}}}{d V}=r_{\mathrm{A}}, \frac{d F_{\mathrm{B}}}{d V}=r_{\mathrm{B}}, \frac{d F_{\mathrm{C}}}{d V}=r_{\mathrm{C}}
$$

(2) Write rate law in terms of concentration.

$$
\text { e.g., }-r_{\mathrm{A}}=k_{\mathrm{A}}\left(C_{\mathrm{A}} C_{\mathrm{B}}^{2}-\frac{C_{\mathrm{C}}}{K_{\mathrm{C}}}\right)
$$

Relative Rates

Stoichiometry
(3) Relate the rates of reaction of each species to one another.

$$
\begin{aligned}
& \frac{-r_{\mathrm{A}}}{1}=\frac{-r_{\mathrm{B}}}{2}=\frac{r_{\mathrm{C}}}{1} \\
& \text { e.g., } r_{\mathrm{B}}=2 r_{\mathrm{A}}, r_{\mathrm{C}}=-r_{\mathrm{A}} .
\end{aligned}
$$

(4) (a) Write the concentrations in terms of molar flow rates for isothermal ($T=T_{0}$) gas-phase reactions.

$$
\begin{aligned}
\text { e.g., } \quad C_{\mathrm{A}}= & C_{\mathrm{T} 0} \frac{F_{\mathrm{A}}}{F_{\mathrm{T}}} \frac{P}{P_{0}}, C_{\mathrm{B}}=C_{\mathrm{T} 0} \frac{F_{\mathrm{B}}}{F_{\mathrm{T}}} \frac{P}{P_{0}} \\
& \text { with } F_{\mathrm{T}}=F_{\mathrm{A}}+F_{\mathrm{B}}+F_{\mathrm{C}}
\end{aligned}
$$

(b) For liquid-phase reactions, use concentration, e.g., $C_{\mathrm{A}}, C_{\mathrm{B}}$

\dagger For a PBR, use $\frac{d F_{\mathrm{A}}}{d W}=r_{\mathrm{A}}, \frac{d F_{\mathrm{B}}}{d W}=r_{\mathrm{B}}$, and $\frac{d F_{\mathrm{C}}}{d W}=r_{\mathrm{C}}$.
Figure 6-1 Isothermal reaction design algorithm for mole balances.

Table 8-1 Mole Balances for Multiple Reactions

Table 8-1 Mole Balances for Multiple Reactions (Cont'd)

Table 8-2 Modification to the CRE Algorithm

Identify	1. Number Each and Every Reaction Separately
Mole Balance	2. Mole Balance on Each and Every Species
	3. Rate Law for Every Reaction

Table 8-2 Modification to the CRE Algorithm (Cont'd)
3. Rate Law for Every Reaction
e.g., $-r_{i j}=k_{i j} f\left(C_{\mathrm{A}}, C_{\mathrm{B}}, \ldots C_{j}\right)$

The subscript " i " refers to the reaction number and the subscript " j " refers to the species.
4. Net Rates of Reaction for Each Species, e.g., j

$$
r_{j}=\sum_{i=1}^{N} r_{i j}
$$

For N reactions, the net rate of formation of species A is:

$$
r_{\mathrm{A}}=\sum_{i=1}^{N} r_{i \mathrm{~A}}=r_{1 \mathrm{~A}}+r_{2 \mathrm{~A}}+\ldots
$$

5. Relative Rates for every reaction

For a given reaction $i: \quad a_{i} A+b_{i} B \rightarrow c_{i} C+d_{i} D$

$$
\frac{r_{i \mathrm{~A}}}{-a_{i}}=\frac{r_{i \mathrm{~B}}}{-b_{i}}=\frac{r_{i \mathrm{C}}}{c_{i}}=\frac{r_{\mathrm{D}}}{d_{i}}
$$

Table 8-2 Modification to the CRE Algorithm

$$
\frac{r_{i \mathrm{~A}}}{-a_{i}}=\frac{r_{i \mathrm{~B}}}{-b_{i}}=\frac{r_{\mathrm{i}}}{c_{i}}=\frac{r_{\mathrm{i}}}{d_{i}}
$$

The remaining steps to the algorithm in Table 6-2 remain unchanged, e.g.,
Stoichiometry $\left\{\begin{array}{cc}\text { Gas Phase } & C_{j}=C_{\mathrm{T} 0} \frac{F_{j}}{F_{\mathrm{T}}} \frac{P}{P_{0}} \frac{T_{0}}{T} \\ & F_{\mathrm{T}}=\sum_{j=1}^{n} F_{j}\end{array}\right.$

Liquid Phase

$$
C_{j}=\frac{F_{j}}{v_{0}}
$$

For Gas Phase Flow Systems: Conversion If $-r_{A}=k C_{A} C_{B}$

$$
-r_{A}=k_{A} C_{A 0}^{2}\left[\frac{(1-X)}{(1+\varepsilon X)} \frac{\left(\Theta_{B}-\frac{b}{a} X\right)}{(1+\varepsilon X)}\left(\frac{P}{P_{0}} \frac{T_{0}}{T}\right)^{2}\right]
$$

This gives us

