Essentials of Chemical Reaction Engineering I Webinar Wednesday, March 9, 2011

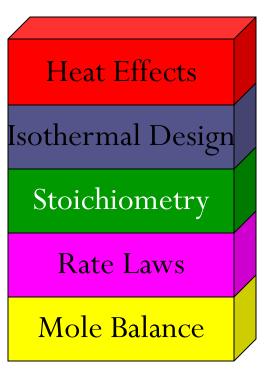
- Algorithm for Single Reactions with Conversion for
 - Batch Reactors (BR)
 - Continuous Stirred Tank Reactor (CSTR)
 - Plug Flow Reactors (PFR)
- Example: Problem from Professional Engineers Registration Exam

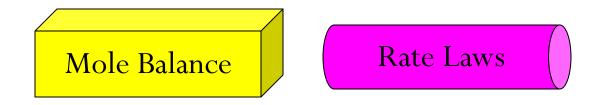
Pressure drop in Pack Bed Reactors (PBRs), the algorithm for multiple reactions and heat effects will be covered in a later lecture.

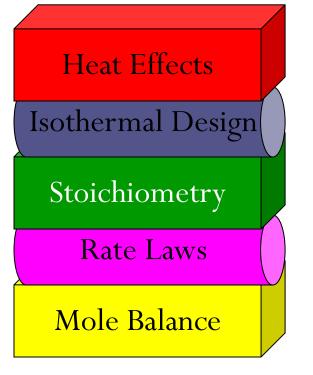
An expanded version of the power point slides can be found at http://www.umich.edu/~essen/

Separations

These topics do not build upon one another







Let's Begin CRE

 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Reaction Rate

- The reaction rate is the rate at which the number of moles of a species looses its chemical identity per unit volume.
- The identity of a chemical species is determined by the kind, number, and configuration of that species' atoms.
- The rate of a reaction (mol/dm³/s) can be expressed as :
 - The rate of Disappearance of the limiting reactant A: -r_A or as
 - The rate of Formation (Generation) of product: \mathbf{r}_{P}

Reaction Rate: The Convention

Consider the isomerization

$A \rightarrow B$

- -r_A = the rate of a disappearance of species A per unit volume (+10 mol/dm³/s)
- r_A = the rate of formation of species A per unit volume (-10 mol/dm³/s)
- r_B = the rate of formation of species B per unit volume (+10 mol/dm³/s)

Reaction Rate

 For a gas-solid catalytic reaction, we refer to -r_A', as the rate of disappearance of species A per unit mass of catalyst. (mol/gcat/s)

NOTE: (dC_A/dt) is **not** the definition of the rate of reaction

Reaction Rate

Consider species j:

- r_j is the rate of formation of species j per unit volume [e.g. mol/dm³s]
- r_j is a function of concentration, temperature, pressure, and the type of catalyst (if any)
- r_j is independent of the type of reaction system (batch, plug flow, etc.)
- 4. r_j is an algebraic equation, not a differential equation

$$(e.g. = -r_A = kC_A \text{ or } -r_A = kC_A^2)$$

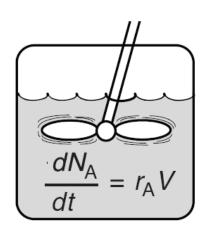
General Mole Balance F_{Ao} G_A G_A F_A

General Mole Balance on System Volume V

$$In - Out + Generation = Accumulation$$
$$F_{A0} - F_A + \int r_A dV = \frac{dN_A}{dt}$$

Batch Reactor Mole Balance

Batch



$$F_{A0} - F_A + \int r_A dV = \frac{dN_A}{dt}$$

$$F_{A0} = F_A = 0$$

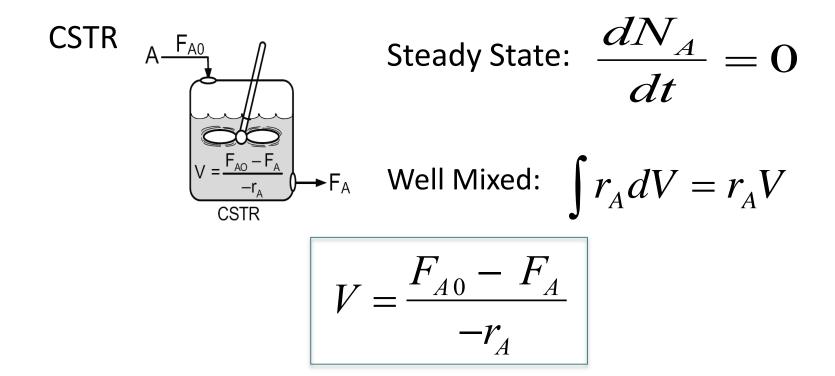
Well Mixed

$$\int r_A dV = r_A V$$

 $\frac{dN_A}{dt} = r_A V$

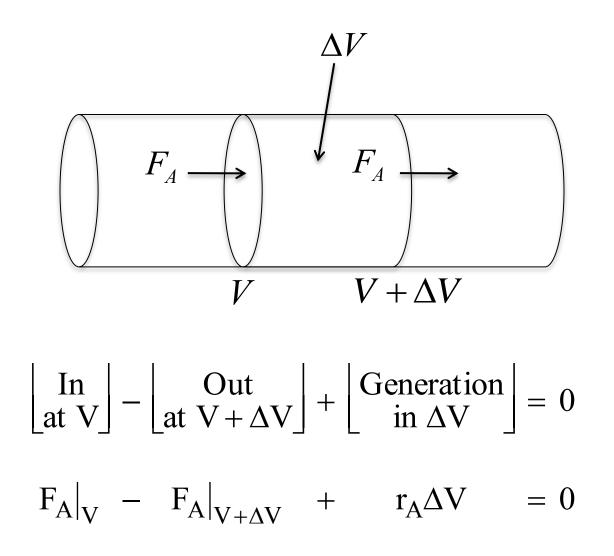
CSTR Mole Balance

$$F_{A0} - F_A + \int r_A dV = \frac{dN_A}{dt}$$



CSTR volume necessary to reduce the molar flow rate from F_{A0} to F_A .

Plug Flow Reactor Mole Balance



Plug Flow Reactor Mole Balance

Rearrange and take limit as $\Delta V \rightarrow 0$

$$\lim_{\Delta V \to 0} \frac{F_A \big|_{V + \Delta V} - F_A \big|_V}{\Delta V} = r_A$$
$$\frac{\frac{dF_A}{dV}}{\frac{dV}{dV}} = r_A$$

The integral form is:
$$V = \int_{F_{A0}}^{F_A} \frac{dF_A}{r_A}$$

This is the volume necessary to reduce the entering molar flow rate (mol/s) from F_{A0} to the exit molar flow rate of F_A .

Packed Bed Reactor Mole Balance Analogous to PFR

Rearrange:

$$\frac{dF_A}{dW} = r'_A$$

The integral form to find the catalyst weight is:

$$W = \int_{F_{A0}}^{F_A} \frac{dF_A}{r'_A}$$

PBR catalyst weight necessary to reduce the entering molar flow rate F_{A0} to a molar flow rate F_{A} .

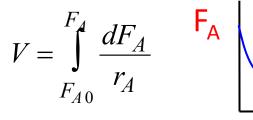
Reactor Mole Balance Summary

Reactor Differential Algebraic Integral

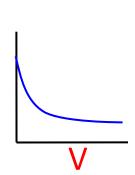
Batch $\frac{dN_A}{dt} = r_A V$

 $\frac{dF_A}{dV} = r_A$

PFR



 $t = \int_{N_{A0}}^{N_A} \frac{dN_A}{r_A V} \qquad \mathbf{N}_{\mathbf{A}}$

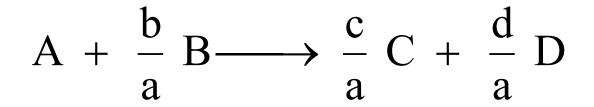


t

Conversion X

$a A + b B \longrightarrow c C + d D$

Choose *limiting reactant* A as basis of calculation

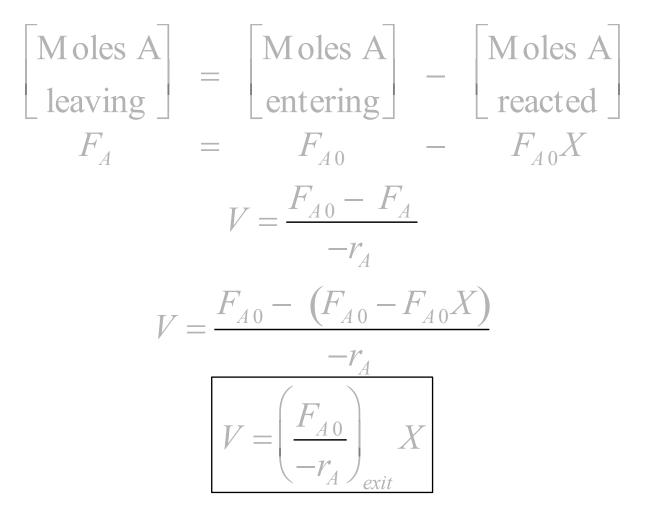


$$X = \frac{\text{moles A reacted}}{\text{moles A fed}}$$

Batch

$$\begin{bmatrix} M \text{ oles } A \\ remaining \end{bmatrix} = \begin{bmatrix} M \text{ oles } A \\ initially \end{bmatrix} - \begin{bmatrix} M \text{ oles } A \\ reacted \end{bmatrix}$$
$$N_A = N_{A0} - N_{A0}X$$
$$dN_A = 0 - N_{A0}dX$$
$$\frac{dN_A}{dt} = 0 - N_{A0}dX$$
$$\frac{dN_A}{dt} = -N_{A0}\frac{dX}{dt} = r_AV$$
$$\begin{bmatrix} \frac{dX}{dt} = \frac{-r_A V}{N_{A0}} \end{bmatrix}$$
$$t = 0 \quad X = 0$$
$$t = t \quad X = X \quad t = N_{A0}\int_0^X \frac{dX}{-r_A V}$$

CSTR



CSTR volume necessary to achieve conversion X.

PFR

V

$$\frac{dF_A}{dV} = r_A$$

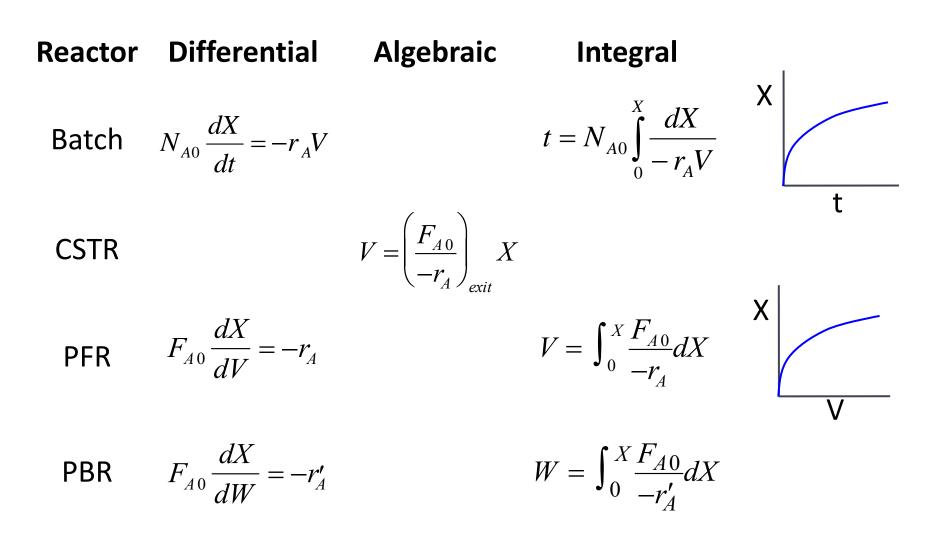
$$F_A = F_{A0} - F_{A0}X$$

$$dF_A = 0 - F_{A0}dX$$

$$V = 0 \qquad X = 0$$

$$V = V \qquad X = X \qquad V = \int_0^X \frac{F_{A0}}{-r_A}dX$$

Reactor Mole Balances in terms of conversion:Summary



Levenspiel Plots

Reactor Sizing

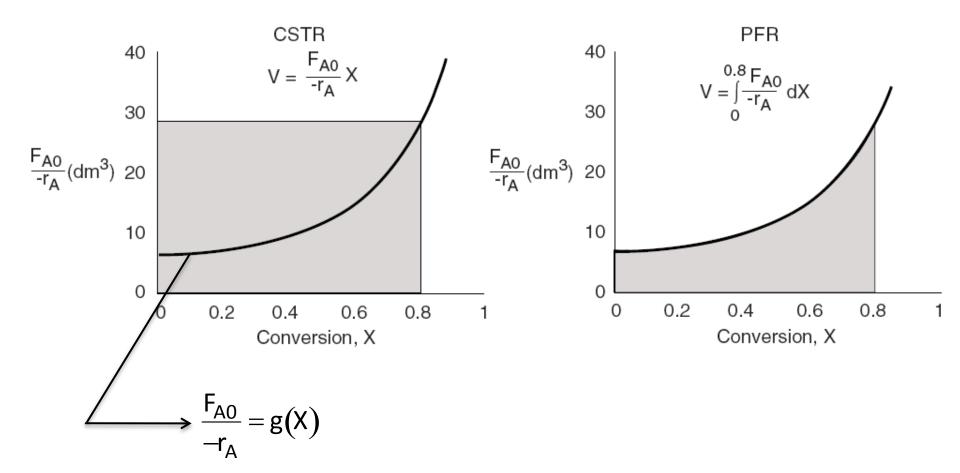
$$V = \int_{0}^{X} \frac{F_{A0}}{-r_{A}} dX \qquad \qquad V = \left(\frac{F_{A0}}{-r_{A}}\right)_{exit} X$$

Just suppose we were given $-r_A$ as a function of conversion, $-r_A = f(X)$, then we could size any CSTR or PFR at the same conditions by constructing a Levenspiel plot of $(F_{AO}/-r_A)$ as a function of X i.e.,

$$\frac{F_{A0}}{-r_A} = g(X)$$

The volume of a CSTR and the volume of a PFR can be represented as the shaded areas in the Levenspiel Plots shown as:

Levenspiel Plots



25

How to find $-r_A = f(X)$

Step 1: Rate Law

$$-\mathbf{r}_{A} = g(\mathbf{C}_{i})$$

Step 2: Stoichiometry $(C_i) = h(X)$

Step 3: Combine to get
$$-r_A = f(X)$$

Reaction Engineering

These topics build upon one another

Rate Laws - Power Law Model

 $-r_{A} = kC^{\alpha}_{A}C^{\beta}_{R}$

 α order in A

 β order in B

Overall Rection Order = $\alpha + \beta$

A reaction follows an elementary rate law if the reaction orders just happen to agree with the stoichiometric coefficients for the reaction as written.

$$2A + B \rightarrow 3C$$

e.g. If the above reaction follows an elementary rate law $-r_{\!A} = k_{A}C_{A}^{2}C_{B}$

2nd order in A, 1st order in B, overall 3rd order

Non Elementary Rate Laws

 $2A + B \rightarrow 3C$

If
$$-r_A = k_A C_A^2$$

- > Second Order in A
- > Zero Order in B
- > Overall Second Order

Reversible Reaction

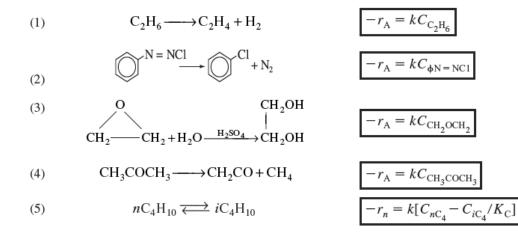
 $2A + B \rightarrow 3C$

Elementary

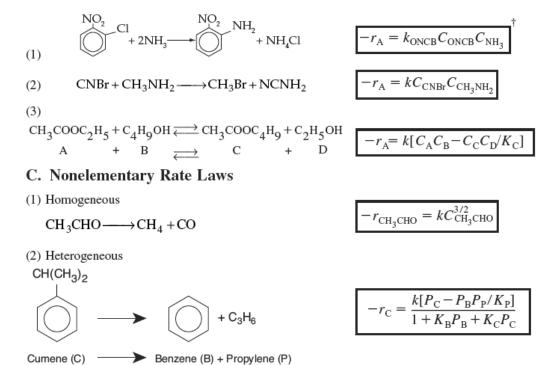
 $-r_{A} = k_{A}C_{A}^{2}C_{R} - k_{A}C_{C}^{3}$ $= k_A \left| C_A^2 C_B - \frac{C_C^3}{k_A / k_A} \right|$ $= k_A \left| C_A^2 C_B - \frac{C_C^3}{K} \right|$

Table 3-1 Example of Reaction Rate Laws

A. First-Order Rate Laws



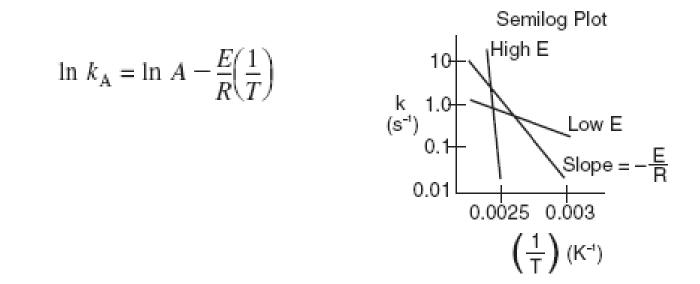
B. Second-Order Rate Laws



Arrhenius Equation

$$k = Ae^{-E/RT}$$

- E = Activation energy (cal/mol)
- R = Gas constant (cal/mol*K)
- T = Temperature (K)
- A = Frequency factor (same units as rate constant k) (units of A, and k, depend on overall reaction order)



How to find $-r_A = f(X)$

Step 1: Rate Law $-r_A = g(C_i)$

Step 2: Stoichiometry $(C_i) = h(X)$

Step 3: Combine to get $-r_A = f(X)$

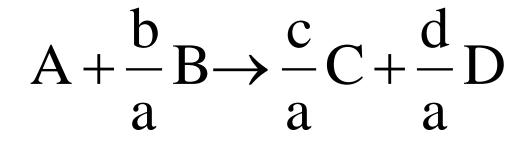
33

Reaction Engineering

34

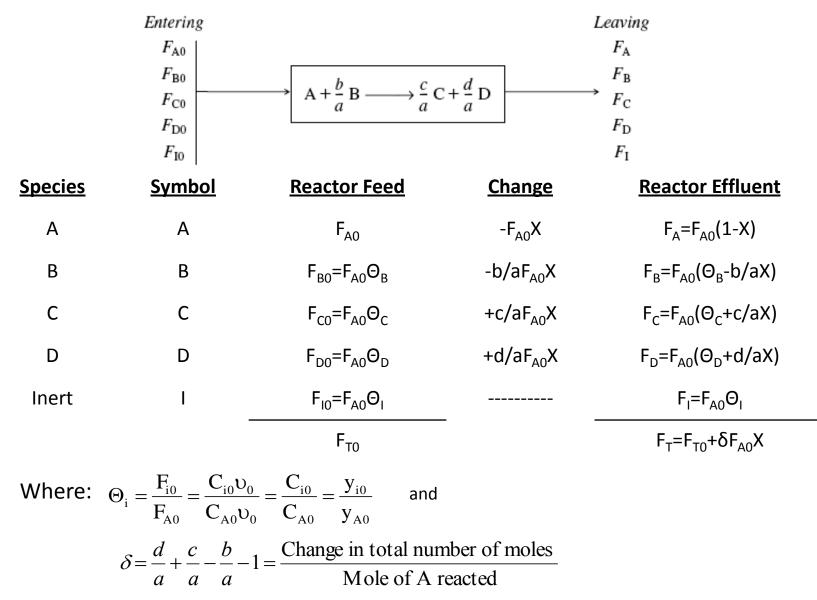
These topics build upon one another

We shall set up <u>Stoichiometry Tables</u> to express the concentration as a function of conversion then combine $C_i = f(X)$ with the appropriate rate law to obtain $-r_A = f(X)$.



A is the *Limiting Reactant*.

Flow System Stochiometric Table



Concentration Flow System: $C_A = \frac{F_A}{\upsilon}$

Liquid Phase Flow System: $v = v_0$

Liquid Systems

$$C_{A} = \frac{F_{A}}{\upsilon} = \frac{F_{A0}(1-X)}{\upsilon_{0}} = C_{A0}(1-X)$$

$$C_{B} = \frac{F_{B}}{\upsilon} = \frac{F_{A0}}{\upsilon_{0}} \left(\Theta_{B} - \frac{b}{a} X \right) = C_{A0} \left(\Theta_{B} - \frac{b}{a} X \right)$$

Equimolar feed: $\Theta_B = 1$

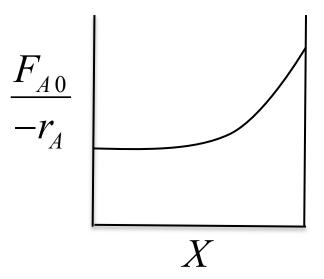
Stoichiometric feed: $\Theta_B = \frac{b}{a}$

Liquid Systems

If the rate of reaction were $-r_A = kC_A C_B$

then we would have
$$-r_A = C_{A0}^2 (1 - X) \left(\Theta_B - \frac{b}{a} X \right)$$

This gives us
$$-r_A = f(X)$$



For Gas Phase Flow Systems

Combining the compressibility factor equation of state with $Z = Z_0$

Stoichiometry:

$$C_{T} = \frac{P}{ZRT}$$

$$C_{T0} = \frac{P_{0}}{Z_{0}RT_{0}}$$

$$C_{T} = \frac{F_{T}}{\upsilon}$$

$$C_{T0} = \frac{F_{T0}}{\upsilon_{0}}$$

$$\frac{C_{T}}{C_{T0}} = \frac{(F_{T}/\upsilon)}{(F_{T0}/\upsilon_{0})} = \frac{(P/ZRT)}{(P_{0}/Z_{0}RT_{0})}$$

$$\upsilon = \upsilon_{0} \frac{F_{T}}{F_{T0}} \frac{P_{0}}{P} \frac{T}{T_{0}}$$

We obtain:

For Gas Phase Flow Systems: Conversion $\upsilon = \upsilon_0 \frac{F_T}{F_{T_0}} \frac{P_0}{P} \frac{T}{T_0}$ The total molar flow rate is: $F_{\rm T} = F_{\rm T0} + F_{\rm A0} \delta X$ Substituting F_T gives: $\upsilon = \upsilon_0 \left(\frac{F_{T0} + F_{A0} \delta X}{F_{T0}} \right) \frac{T}{T_0} \frac{P_0}{P}$ $\upsilon = \upsilon_0 \left(1 + \frac{F_{A0}}{F_{T0}} \delta X \right) \frac{T}{T_0} \frac{P_0}{P}$

$$\upsilon = \upsilon_0 \left(1 + y_{A0} \delta X \right) \frac{T}{T_0} \frac{P_0}{P}$$

$$\upsilon = \upsilon_0 \left(1 + \varepsilon X \right) \frac{T}{T_0} \frac{P_0}{P}$$

For Gas Phase Flow Systems: Conversion

$$\upsilon = \upsilon_0 (1 + \varepsilon X) \frac{T}{T_0} \frac{P_0}{P}$$
$$\varepsilon = \frac{F_{A0}}{F_{T0}} \left(\frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1 \right) = y_{A0} \delta$$
$$\varepsilon = y_{A0} \delta$$

where

 $\varepsilon = \frac{\text{change in total number of moles for complete conversion}}{\text{total number of moles fed to the reactor}}$

For Gas Phase Flow Systems: Conversion

Concentration Flow System: $C_A = \frac{F_A}{F_A}$ 1)

Gas Phase Flow System:
$$\upsilon = \upsilon_0 (1 + \varepsilon X) \frac{T}{T_0} \frac{P_0}{P}$$

$$C_{A} = \frac{F_{A}}{\upsilon} = \frac{F_{A0}(1-X)}{\upsilon_{0}(1+\varepsilon X)\frac{T}{T_{0}}\frac{P_{0}}{P}} = \frac{C_{A0}(1-X)}{(1+\varepsilon X)}\frac{T_{0}}{T}\frac{P}{P_{0}}$$
$$C_{B} = \frac{F_{B}}{\upsilon} = \frac{F_{A0}\left(\Theta_{B} - \frac{b}{a}X\right)}{\upsilon_{0}(1+\varepsilon X)\frac{T}{T}\frac{P_{0}}{P}} = \frac{C_{A0}\left(\Theta_{B} - \frac{b}{a}X\right)}{(1+\varepsilon X)}\frac{T_{0}}{T}\frac{P}{P_{0}}$$

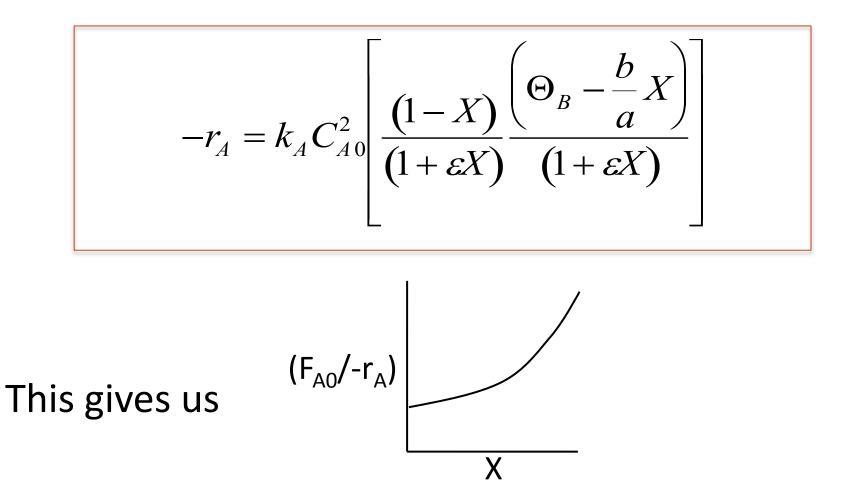
Ρ

If constant temperature and no pressure drop

$$C_{A} = \frac{F_{A}}{\upsilon} = \frac{F_{A0}(1-X)}{\upsilon_{0}(1+\varepsilon X)} = \frac{C_{A0}(1-X)}{(1+\varepsilon X)}$$
$$C_{B} = \frac{F_{B}}{\upsilon} = \frac{F_{A0}\left(\Theta_{B} - \frac{b}{a}X\right)}{\upsilon_{0}(1+\varepsilon X)} = \frac{C_{A0}\left(\Theta_{B} - \frac{b}{a}X\right)}{(1+\varepsilon X)}$$

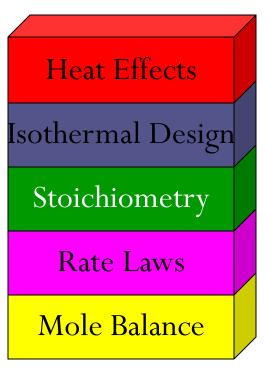
For Gas Phase Flow Systems: Conversion

If $-r_A = kC_A C_B$, and Isothermal and isobaric



Reaction Engineering

These topics build upon one another



Le Calaliste Flambé 344 Champs Elyster

Menu à 220FF

Pate de Canard (supplément 15FF) **Coquilles Saint-Jacques** Potage Crème de Cresson Escargots à La Bourguignonne (supplement 15FF)

Appelizer

GRANT C

Entrão

Cassoulet Ragnons de Veau Cog au Vin Boeuf à la provençale (Tous nos plats sont garnis)

GRAND AU

Dogrant Brie ou Crème Anglaise

JACTOR

1/2 bouteille de vin blanc ou vin rouge

Mole Balance

47

Batch Reactor CSTR PFR/PBR Semibatch Reactor

Rale Law

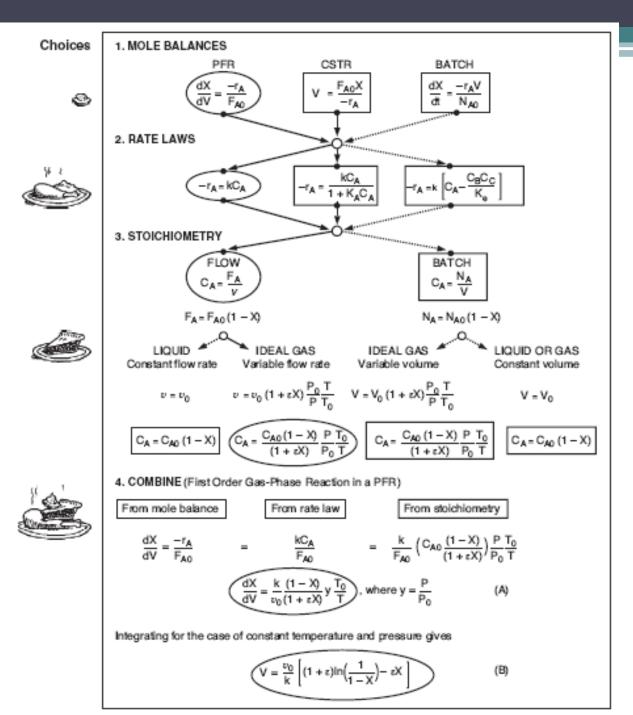
Power Law (e.g.) 1st Order 2nd Order Non-Integer Order

Stoichiometry

Gas or Liquid

Combine Mix together and digest with 1/2 bouteille of POLYMATH

Service Compris



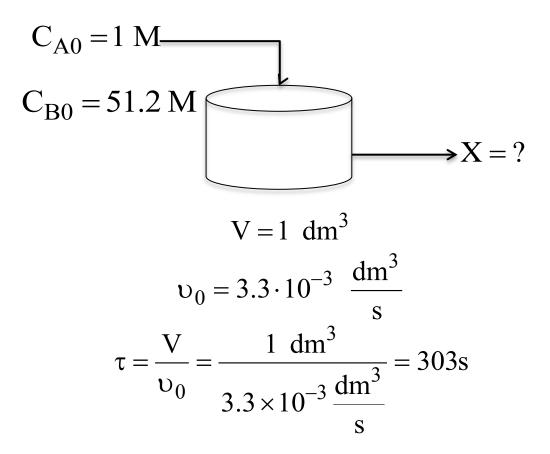
Part 1: Mole Balances in Terms of Conversion

Algorithm for Isothermal Reactor Design

- 1. Mole Balance and Design Equation
- 2. Rate Law
- 3. Stoichiometry
- 4. Combine
- 5. Evaluate
 - A. Graphically (Levenspiel plots)
 - B. Numerical (Quadrature Formulas)
 - C. Analytical (Integral Tables)
 - D. Software Packages (Polymath)

Example: $(CH_2CO)_2O + H_2O \rightarrow 2CH_3COOH$

 $A + B \rightarrow 2C$



<u>**1) Mole Balance:</u>** CSTR: $V = \frac{F_{A0}X}{-r_A}$ </u>

 $\underline{2) \text{ Rate Law:}} \qquad -r_A = k_A C_A C_B$

3) Stoichiometry:

 A
 F_{A0} $-F_{A0}X$ $F_{A}=F_{A0}(1-X)$

 B
 $F_{A0}\Theta_{B}$ $-F_{A0}X$ $F_{B}=F_{A0}(\Theta_{B}-X)$

 C
 0
 $2F_{A0}X$ $F_{C}=2F_{A0}X$

$$C_{A} = \frac{F_{A}}{\upsilon} = \frac{F_{A0}(1-X)}{\upsilon_{0}} = C_{A0}(1-X)$$

3) Stoichiometry (cont'd):

$$C_{A} = \frac{F_{A}}{\upsilon} = \frac{F_{A0}(1-X)}{\upsilon_{0}} = C_{A0}(1-X)$$

$$C_B = \frac{F_{A0}(\Theta_B - X)}{\upsilon_0} = C_{A0}(\Theta_B - X)$$

$$\Theta_B = \frac{51.2}{1} = 51.2$$

$$C_B = C_{A0}(51.2 - X) \approx C_{A0}(51.2) \approx C_{B0}$$

$$-r_{A} = k_{A} C_{30} C_{A0} (1 - X) = k C_{A0} (1 - X) , \quad k = 0.01 \quad s^{-1}$$

$$k$$

1) Mole Balance:

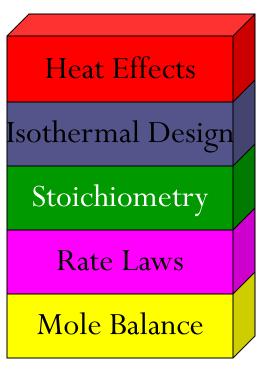
CSTR: $V = \frac{F_{A0}X}{-r_A}$

 $V = \frac{\upsilon_0 C_{A0} X}{k C_{A0} (1 - X)} \implies \frac{V}{\upsilon_0} = \frac{X}{k(1 - X)} \implies \tau = \frac{V}{\upsilon_0} = \frac{X}{k(1 - X)}$

 $X = \frac{\tau k}{1 + \tau^k}$

$$\tau k = (303s)(0.01 \ s^{-1}) = 3.03$$

$$X = \frac{3.03}{4.03} = 0.75$$



Ceneral Guidelines for California Problems

Some hints:

1. Group unknown parameters/values on the same side of the equation

example: [unknowns] = [knowns]

- 2. Look for a Case 1 and a Case 2 (usually two data points) to make intermediate calculations
- 3. Take ratios of Case 1 and Case 2 to cancel as many unknowns as possible
- 4. Carry all symbols to the end of the manipulation before evaluating, UNLESS THEY ARE ZERO

California Professional Engineers Exam is not curved, 75% or better to pass.

California Profession Engineers Exam

The irreversible elementary gas phase reaction takes place in an isothermal plug-flow reactor. Reactant A and a diluent I are fed in an equimolar ratio and the conversion of A is 80%.

If the molar feed rate of A is cut in half, what is the conversion of A assuming that the feed rate of I is left unchanged?

When $F_{A01} = F_{I0}$ then X = 0.8

Unknown:

$$F_{A02} = 0.5 \quad F_{A01} = 0.5 \quad F_{I0} \qquad \qquad X = ?$$

 $\mathbf{V}, \mathbf{k}, \mathbf{T}, \mathbf{P}, \mathbf{C}_{A0}, F_{A0}, F_{I0}, V_0$

Will the conversion increase or decrease?

- INCREASE: Slower Volumetric Rate (Reactants spend more time in the reactor)
- DECREASE: Concentration of Reactant Diluted

Assumptions:

$$T = T_0, P = P_0, V_1 = V_2,$$

$$k_1 = k_2, P_1 = P_2, C_{T01} = C_{T02}$$

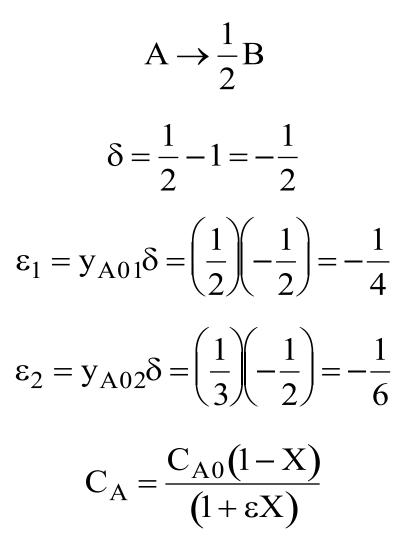
1) Mole Balance:

$$\frac{\mathrm{dX}}{\mathrm{dV}} = \frac{-\mathbf{r}_{\mathrm{A}}}{\mathrm{F}_{\mathrm{A0}}}$$

<u>2) Rate Law:</u> $-r_A = kC_A^2$

<u>3) Stoichiometry</u>: (gas phase) $T = T_0$, $P = P_0$, $\therefore \upsilon = \upsilon_0 (1 + \varepsilon X)$

 $A \rightarrow \frac{1}{2} B$



4) Combine:

$$-r_{A} = kC_{A}^{2} = -r_{A} = kC_{A0}^{2} \left(\frac{(1+X)}{(1+\varepsilon X)}\right)^{2}$$
$$\frac{dX}{dV} = \frac{kC_{A0}^{2}}{F_{A0}} \left(\frac{(1-X)}{(1+\varepsilon X)}\right)^{2}$$
$$V = \frac{F_{A0}}{kC_{A0}^{2}} \int_{0}^{X} \left(\frac{(1+\varepsilon X)}{(1-X)}\right)^{2} dX$$
$$\frac{kC_{A0}^{2}V}{F_{A0}} = 2\varepsilon(1+\varepsilon)\ln(1-X) + \varepsilon^{2}X + (1+\varepsilon)^{2}\frac{X}{1-X}$$

Case 1: $\varepsilon_1 = -\frac{1}{4}, \ X = 0.5$ $\frac{VkC_{A01}^2}{F_{A01}} = 2\left(-\frac{1}{4}\right)\left(1 - \frac{1}{4}\right)\ln(1 - 0.8) + \left(\frac{1}{4}\right)^2(0.8) + \left(1 - \frac{1}{4}\right)^2\frac{0.8}{1 - 0.8} = 2.9$ Case 2: $\varepsilon_2 = -\frac{1}{6}, \ X_2 = ?$

 $\frac{kC_{A02}^2V}{F_{A02}} = 2\varepsilon_2(1+\varepsilon_2)\ln(1-X_2) + \varepsilon_2^2X_2 + (1+\varepsilon_2)^2\frac{X_2}{1-X_2}$

$\frac{\text{Case 2}}{\text{Case 1}} = \frac{\frac{kC_{A02}^2 V}{F_{A02}}}{\frac{kC_{A01}^2 V}{F_{A01}}} = \frac{2\epsilon_2(1+\epsilon_2)\ln(1-X_2) + \epsilon_2^2 X_2 + (1+\epsilon_2)^2 \frac{X_2}{1-X_2}}{2\epsilon_1(1+\epsilon_1)\ln(1-X_1) + \epsilon_1^2 X_1 + (1+\epsilon_1)^2 \frac{X_1}{1-X_1}}$

Must make this assumption to keep pressure the same, $C_{T02}=C_{T01}$ $\frac{k\left(\frac{C_{A02}^{2}}{F_{A02}}\right)}{\left(\frac{C_{A01}^{2}}{F_{A01}}\right)} = \left(\frac{C_{A02}}{C_{A01}}\right)^{2} \left(\frac{F_{A01}}{F_{A02}}\right) = \left(\frac{y_{A02}}{y_{A01}}\frac{C_{T02}}{C_{T01}}\right)^{2} \left(\frac{F_{A01}}{F_{A02}}\right)$ $= \left(\frac{y_{A02}}{y_{A01}}\right)^{2} \left(\frac{F_{A01}}{F_{A02}}\right) = \frac{RHS(X_{2})}{29}$ $y_{A01} = \frac{1}{2}$ $y_{A02} = \frac{1}{3}$ $\frac{F_{A02}}{F_{A01}} = \frac{1}{2}$ $\frac{\text{RHS}(X_2)}{2.9} = \left(\frac{2}{3}\right)^2 \left(\frac{1}{1/2}\right) = \frac{8}{9}$

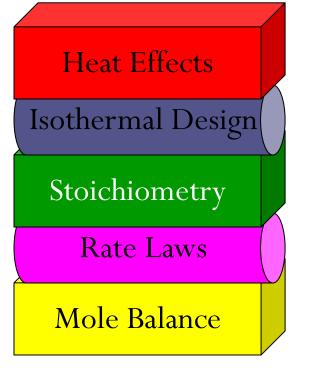
$$\begin{pmatrix} 8 \\ 9 \end{pmatrix} (2.9) = 2.58 = 2\varepsilon_2 (1 + \varepsilon_2) \ln(1 - X_2) + \varepsilon_2^2 X_2 + (1 + \varepsilon_2)^2 \frac{X_2}{1 - X_2}$$

$$\varepsilon_2 = y_{A02}\delta = \frac{-1}{6}$$

63

$$2.58 = 2\left(-\frac{1}{6}\right)\left(1-\frac{1}{6}\right)\ln\left(1-X_2\right) + \left(-\frac{1}{6}\right)^2 X_2 + \left(1-\frac{1}{6}\right)^2 \frac{X_2}{1-X_2}$$

One equation and one unknown. Solve trial and error or with computer to find: **X=0.758**



Please note: In the following material you will find one more example of a gas phase reaction with volume change and the algorithm for membrane reactors and multiple reactions.

For Gas Phase Flow Systems

 $C_{A} = \frac{F_{A}}{\upsilon} = \frac{F_{A}}{\upsilon_{0} \left(\frac{F_{T}}{F_{0}}\right)} \left(\frac{P}{P_{0}}\right) \left(\frac{T_{0}}{T}\right) = \frac{F_{T0}}{\upsilon_{0}} \left(\frac{F_{A}}{F_{T}}\right) \left(\frac{P}{P_{0}}\right) \left(\frac{T_{0}}{T}\right)$ $C_A = C_{T0} \left(\frac{F_A}{F_T} \right) \left(\frac{P}{P_0} \right) \left(\frac{T_0}{T} \right)$ $C_{T0} = \frac{F_{T0}}{D_0}$ $C_B = C_{T0} \left(\frac{F_B}{F_{T}} \right) \left(\frac{P}{P_o} \right) \left(\frac{T_0}{T} \right)$

Why is there an Activation Energy?

For the reaction to occur, the reactants must overcome an energy barrier or activation energy E_A . The energy to overcome their barrier comes from the transfer to the kinetic energy from molecular collisions into internal energy (e.g. Vibrational Energy).

- 1. The molecules need energy to disort or stretch their bonds in order to break them and thus form new bonds
- 2. As the reacting molecules come close together they must overcome both stearic and electron repulsion forces in order to react.

– Examples:

Gas Phase : PFR and Batch Calculation $2NOCI \rightarrow 2NO + Cl_2$ $2A \rightarrow 2B + C$

Pure NOCl fed with $C_{NOCl,0} = 0.2 \text{ mol/dm}^3$ follows an elementary rate law with k = 0.29 dm³/mol•s)

69

PFR with $v_0 = 10 \text{ dm}^3/\text{s}$ Find reactor volume, V and tau for X = 0.9

$$F_{A0}$$
 $V = ? X = 0.9$

Example: Gas Flow PFR

$$2\text{NOCI} \rightarrow 2\text{NO} + \text{Cl}_2$$
$$2\text{A} \rightarrow 2\text{B} + \text{C}$$

$$\upsilon_0 = 10 \ \frac{dm^3}{s}$$

$$k = 0.29 \frac{dm^3}{mol \cdot s}$$

$$C_{A0} = 0.2 \frac{mol}{dm^3}$$

 $T = T_0$

$$P = P_0$$

X = 0.9

1) Mole Balance:

$$\frac{dX}{dV} = \frac{-r_A}{F_{A\,0}}$$

<u>2) Rate Law:</u> -

$$-r_A = kC_A^2$$

Example: Gas Flow PFR

<u>3) Stoich</u>: Gas $T = T_0$, $P = P_0$.

$$\upsilon = \upsilon_0 (1 + \varepsilon X)$$

$$C_A = \frac{F_A}{\upsilon} = \frac{F_{A0}(1 - X)}{\upsilon_0 (1 + \varepsilon X)} = \frac{C_{A0}(1 - X)}{(1 + \varepsilon X)}$$

$$A \rightarrow B + C/2$$

$$A \rightarrow B + C/2$$

$$-r_A = kC_A^2 = \frac{kC_{A0}^2(1 - X)^2}{(1 + \varepsilon X)^2}$$

$$\frac{dX}{dV} = \frac{-r_A}{F_{A0}} = \frac{kC_{A0}^2(1 - X)^2}{C_{A0}\upsilon_0 (1 + \varepsilon X)^2}$$

$$\Rightarrow \int_0^X \frac{(1 + \varepsilon X)^2}{(1 - X)^2} dX = \int_0^Y \frac{kC_{A0}}{\upsilon_0} dV = \frac{kC_{A0}V}{\upsilon_0} = \frac{6P8}{kC_{A0}\tau}$$

Example: Gas Flow PFR

$$kC_{A0}\tau = 2\varepsilon(1+\varepsilon)\ln(1-X) + \varepsilon^2 X + \frac{(1+\varepsilon)^2 X}{1-X}$$

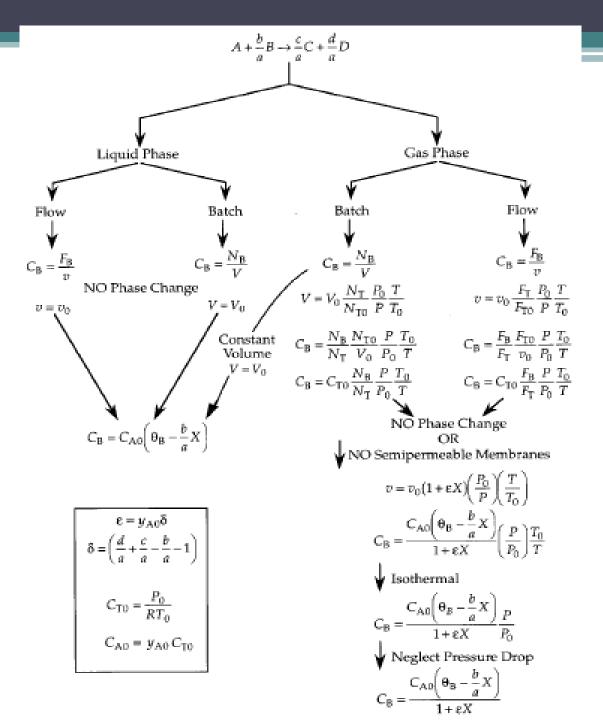
$$\varepsilon = y_{A0}\delta = (1)(\frac{1}{2}+1-1) = \frac{1}{2}$$
, $X = 0.9$

 $A \rightarrow B + C/2$

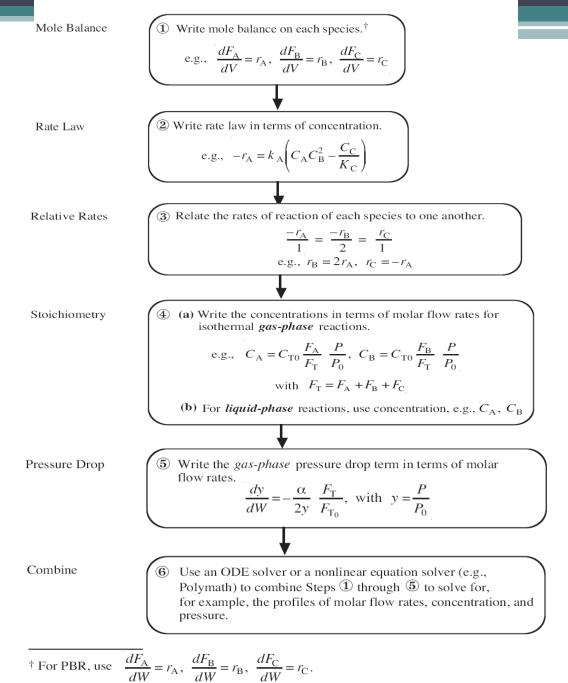
$$kC_{A0}\tau = 17.02$$

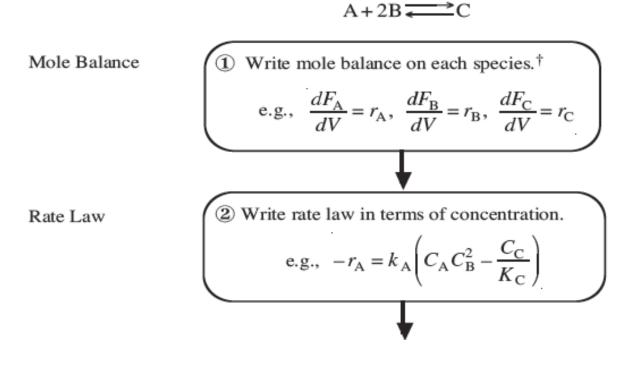
$$\tau = \frac{17.02}{kC_{A0}} = 294$$
 sec

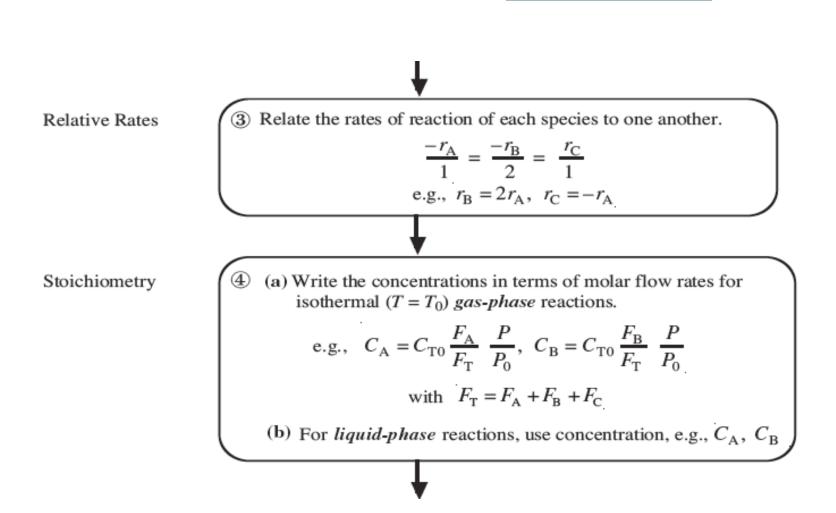
$$V = \upsilon_0 \tau = 2940 \ dm^3$$



 $A + 2B \xrightarrow{\longrightarrow} C$







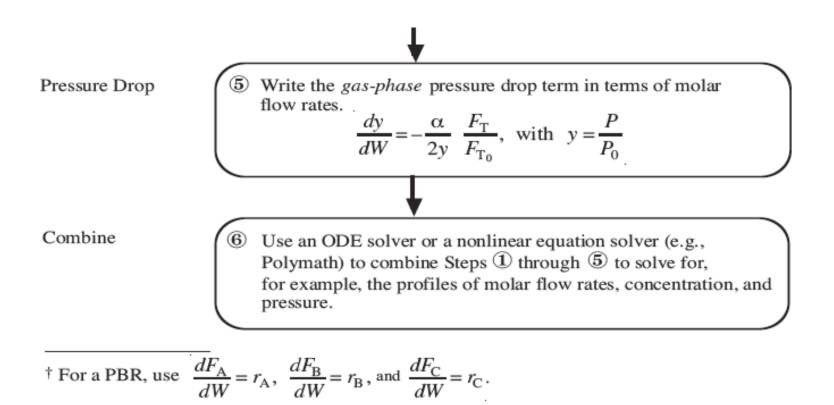
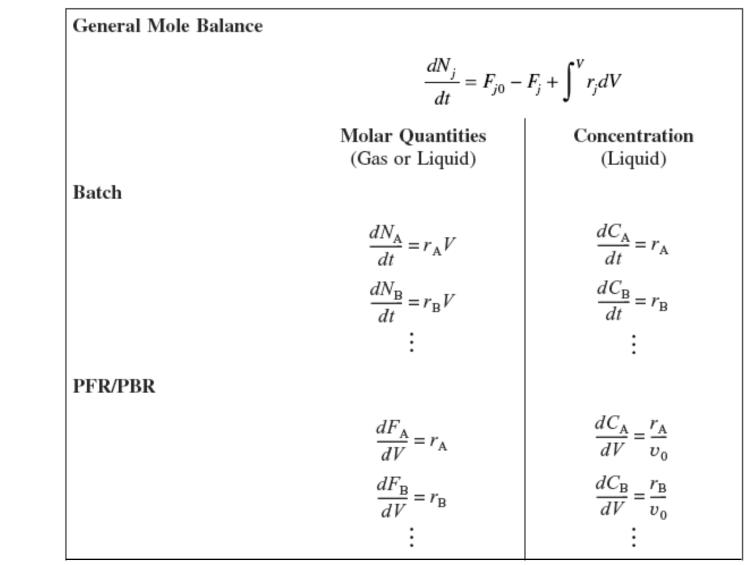


Figure 6-1 Isothermal reaction design algorithm for mole balances.



Mole balance on every species

TABLE 8-1 MOLE E	BALANCES FOR MULTIPLE	REACTIONS (Cont'd)
CSTR		
	$V = \frac{F_{A0} - F_A}{(-r_A)_{exit}}$	$V = \frac{v_0 [C_{A0} - C_A]}{(-r_A)_{exit}}$
	$V = \frac{F_{\rm B0} - F_{\rm B}}{(-r_{\rm B})_{exit}}$	$V = \frac{v_0 [C_{\rm B0} - C_{\rm B}]}{(-r_{\rm B})_{exit}}$
	:	:
Membrane: C diffuses out		
	$\frac{dF_{\rm A}}{dV} = r_{\rm A}$	$\frac{dF_{\rm A}}{dV} = r_{\rm A}$
	$\frac{dF_{\rm B}}{dV} = r_{\rm B}$	$\frac{dF_{\rm B}}{dV} = r_{\rm B}$
	$\frac{dF_{\rm C}}{dV} = r_{\rm C} - R_{\rm C}$	$\frac{dF_{\rm C}}{dV} = r_{\rm C} - R_{\rm C}$
	:	
Semibatch B added to A		
	$\frac{dN_{\rm A}}{dt} = r_{\rm A}V$	$\begin{aligned} \frac{dC_{\rm A}}{dt} &= r_{\rm A} - \frac{v_0 C_{\rm A}}{V} \\ \frac{dC_{\rm B}}{dt} &= r_{\rm B} + \frac{v_0 [C_{\rm B0} - C_{\rm B}]}{V} \end{aligned}$
	$\frac{dN_{\rm B}}{dt} = F_{\rm B0} + r_{\rm B}V$	$\frac{dC_{\rm B}}{dt} = r_{\rm B} + \frac{v_0 [C_{\rm B0} - C_{\rm B}]}{V}$
	:	:

TABLE 8-1 MOLE BALANCES FOR MULTIPLE REACTIONS (Cont'd)

TABLE 8-2 MODIFICATION TO THE CRE ALGORITHM

Identify	1.	Number Each and Every Reaction Separately
Mole Balance	2.	Mole Balance on Each and Every Species
	3.	Rate Law for Every Reaction

3. Rate Law for Every Reaction e.g., $-r_{ij} = k_{ij} f(C_A, C_B, \dots C_j)$ The subscript "i" refers to the reaction number and the subscript "j" refers to the species. 4. Net Rates of Reaction for Each Species, e.g., j $r_j = \sum_{ij}^{n} r_{ij}$ Rates For N reactions, the net rate of formation of species A is: r_{ij} $r_{\rm A} = \sum_{i=1}^{n} r_{i\rm A} = r_{1\rm A} + r_{2\rm A} + \dots$ species reaction number 5. Relative Rates for every reaction For a given reaction *i*: $a_iA + b_iB \rightarrow c_iC + d_iD$ $\frac{r_{iA}}{r_{iB}} = \frac{r_{iB}}{r_{iC}} = \frac{r_{iC}}{r_{iD}}$

TABLE 8-2 MODIFICATION TO THE CRE ALGORITHM (Cont'd)

82

 TABLE 8-2
 MODIFICATION TO THE CRE ALGORITHM
 (Cont'd)

$$\frac{r_{iA}}{-a_i} = \frac{r_{iB}}{-b_i} = \frac{r_{iC}}{c_i} = \frac{r_{iD}}{d_i}$$

The remaining steps to the algorithm in Table 6-2 remain unchanged, e.g.,

Gas Phase

$$C_j = C_{\rm T0} \, \frac{F_j}{F_{\rm T}} \, \frac{P}{P_0} \, \frac{T_0}{T}$$

п

 $F_{\mathrm{T}} = \sum_{j=1}^{N} F_j$

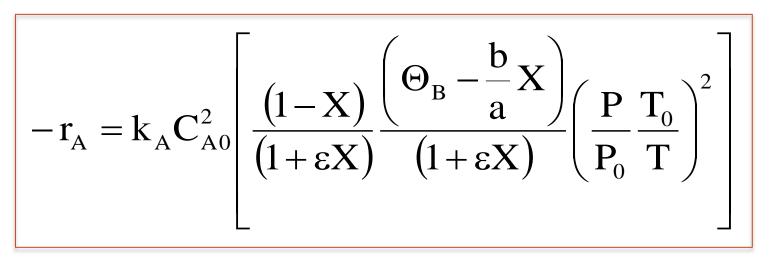
Stoichiometry

Liquid Phase

$$C_j = \frac{F_j}{v_0}$$

For Gas Phase Flow Systems: Conversion

If $-r_A = kC_A C_B$



This gives us

$$(F_{A0}/-r_A)$$