HUMIDIFICATION AND WATER COOLING

ChEn 5402 Fall 1990 A.A. Servida

DEFINITION:

 Operations in which mass and energy are transferred between a liquid stream and a gas stream 1

- The gas is insoluble in the liquid; the liquid contains only one component
 - ⇒ no resistance to mass transfer in the liquid phase

PURPOSES:

- Humidification and/or Dehumidification
- Cooling of gases
- Cooling of liquids

DRIVING FORCE:

Mass and Heat transfer are important aspects of the process and cannot be treated separately

BASIC DEFINITIONS

(SI Units)

Vapor:

(Component A)

gaseous form of the component also present

as liquid, e.g. water;

Gas

(Component B)

component which is present only in the

gaseous form, e.g. air;

Humidity, H:
(Kg of vapor/Kg of dry gas)

mass of vapor per unit mass of vapor-free gas:

$$H = \frac{M_A p_A}{M_B (P - p_A)} \tag{1}$$

Saturated Gas:

gas in which the vapor is in equilibrium with its liquid at the given temperature:

$$p_A = p_{AS}(T)$$
 and $H = H_S$ (2)

Percentage Relative

Humidity, H_R:

 $H_R = 100 p_A / p_{AS}$

Percentage Humidity, Hp:

 $Hp = 100 H / H_S$

Dry Bulb Temperature, T

temperature measured by the

ordinary thermometer;

Dew Point:

 $(\circ C)$

temperature at which the vapor-gas mixture

becomes saturated when cooled at constant

pressure;

BASIC DEFINITIONS (cont.) (SI Units)

<u>Humid Volume</u>, V_H: (m³/Kg of dry gas)

total volume of a unit mass of dry gas plus

its accompaining vapor at 1.0 atm:

$$V_{H} = \left(\frac{1}{M_{B}} + \frac{H}{M_{A}}\right) 22.41 \frac{T + 273}{273}$$
 (3)

M_i: molecular weight of the species i-th (Kg / Kg mol)

T : temperature in ⁰C

Humid Heat, c_s:

(J/Kg of dry gas ℃)

heat required to raise the temperature of

a unit mass of dry gas plus its vapor

contenent by 10K or 10C at constant pressure:

$$c_{S} = c_{pB} + H c_{pA} \tag{4}$$

 c_{pi} : specific heat at constant pressure of the component i-th (J/Kg 0 K)

Enthalpy, H_y: (J/Kg of dry gas)

total enthalpy of a unit mass of dry gas

and its vapor contenent:

$$Hy = c_{pB} (T - T_0) + H [c_{pA} (T - T_0) + \lambda_0]$$
 (5)

or

$$Hy = c_S (T - T_O) + \lambda_O H$$
 (6)

 T_o : reference (or base) temperature (0 C) λ_o : latent heat at the temperature T_o (J/Kg)

PSYCHROMETRIC RELATIONS FOR THE SYSTEM

AIR - WATER

(A: water; B: dry air) (Reference: Treybal, 1980)

	SI units (Kg, J, m, Pa*, °C)	English engineering units (lb _m , Btu, ft, lb _f /in ² , °F)
MA	18.02 Kg/Kgmol	18.02 lb _m /lb mol
Мв	28.97 Kg/Kg mol	28.97 lb _m /lbmol
Н	$H = \frac{18.02 p_A}{28.97 (P - p_A)} \text{Kg H}_2\text{O/Kg air}$	$H = \frac{18.02 p_A}{28.97 (P - p_A)} lb_m H_2 O/Kg air$
V _H	(0.00283 + 0.00456 H) (T + 273) m ³ /Kg dry air (T in °C)	(0.0252 + 0.0405 H) (T + 460) ft ³ /lb _m dry air (T in °F)
Cs	(1005 + 1884 H) J/(Kg dry air) °C	(0.24 + 0.45 H) Btu/(lb _m dry air) °F
To	0 ℃	32 °F
λο	2.5014 x 10 ⁶ J/Kg	1075.8 Btu/lb _m
Ну	(1005 + 1884 H) T + 2.5014 x 10 ⁶ H J/(Kg dry air) referred to gaseous air and saturated liquid water at 0 °C (T in °C)	(0.24 + 0.45 H) (T - 32) + 1075.8 H Btu/(lb _m dry air) referred to gaseous air and saturated liquid water at 32 °F (T in °F)

^{* 1} Pa (Pascal) = 1 N/m^2 ; 1 atm = 101.325 KPa

PSYCHROMETRIC CHART FOR AIR-WATER SYSTEM

(Reference: Geankoplis,1983)

Figure 9.3-2 Humidity chart for mixtures of air and water vapor at a total pressure of 101.325 kPa (760 mm Hg). (From R. E. Treybal, Mass-Transfer Operations, 3rd ed. New York. McGraw-Hill Book Company, 1980. With permission.)

ADIABATIC SATURATION TEMPERATURE, Ts

(Contact of a small volume of gas with a large volume of liquid)

(G: Mass flowrate of the vapor-free gas, Kg/hr)

$$\Delta H = \left(\frac{\text{amount of evaporated liquid}}{\text{unit mass of vapor-free gas}}\right)$$
 (7)

The system is *adiabatic*:

(Enthalpy in) = (Enthalpy out)

or:

$$G \{c_s (T - T_S) + H \lambda_s\} = G H_S \lambda_s$$

or by solving w.r.t. Hs - H:

$$H_{S} - H = \frac{c_{s}}{\lambda_{s}} (T - T_{S})$$
 (8)

WET BULB TEMPERATURE, TW

(Contact of a small volume of liquid with a large volume of gas)

At steady state:

or:

$$h A (T - T_W) = \lambda_W A M_A k_y (y_W - y)$$
 (9)

h: heat-transfer coefficient in watt/ m^2 ; k_y : mass-transfer coefficient in mole/(sec m^2 mol frac.); A: surface area in m^2 ; y: molar fraction of the water vapor; y_w : molar fraction of the water vapor at the liquid-gas interface; M_A : molecular weight of water in kg/kg mol.

Now:

$$y = \frac{H/M_A}{H/M_A + 1/M_B} \tag{10}$$

WET BULB TEMPERATURE, Tw (cont.)

since H is usually small, it follows:

$$y \approx H (M_B/M_A) \tag{11}$$

and eqn. (9) can be recasted in the following form:

$$H_{w} - H = \frac{h / (M_{B} k_{y})}{\lambda_{w}} (T - T_{w})$$
 (12)

 $h / (M_B k_y)$: psychrometric ratio. For the system air-water experimental data show that : $c_s = h / (M_B k_y)$ (Lewis Relation)

 \implies For the system air-water the adiabatic saturation line coincides with the psychrometric line and $T_S = T_W$

PSHYCHROMETRIC CHART FOR THE SYSTEM AIR-BENZENE

(From: McCabe, Smith and Harriott, 4-th ed.)

Figure 23-6 Humidity chart for air-benzene vapor mixtures. [By permission, from J. H. Perry (ed.), "Chemical Engineers' Handbook," 3d ed. Copyright, 1950, McGraw-Hill Book Company.]

GAS-LIQUID CONTACT

The gas-liquid contact can be achieved *Adiabatically* or *Non-Adiabatically*

Adiabatic Operations

a) Cooling a Gas:

· no fouling heat exchanger;

• some of the liquid is lost;

b) Humidifying a Gas:

· way to control the moisture contenent;

c) Dehumidifying a Gas:

air conditioning;

solvent recovery;

d) Cooling a Liquid:

· water cooling.

Non-adiabatic Operations

a) Evaporating Cooling:

 liquid or gas flowing inside a pipe is cooled by an external film which is cooled by direct contact with a flowing air stream;

b) Dehumidifying a Gas:

• gas-vapor mixture brought into contact with refrigerated pipe.

GAS-LIQUID CONTACT (cont.)

Equipment

• Packed Towers :

conventional equipment;

• Tray Towers :

· conventional equipment;

• Water Cooling Towers :

- packing: wood grid (redwood), or plastic grid;

• Spray Chambers :

- · horizontal spray towers;
- for adiabatic humidification with recirculating liquid;

Spray Ponds:

- · they are fountains;
- · high liquid losses by windage.

COUNTERCURRENT ADIABATIC OPERATION: WATER COOLING

• Semplifications:

- i) Lewis relation holds;
- ii) Small amount of liquid evaporates \implies L' \approx const.;
- iii) Temperature level is fairly low \implies the transfer of sensible heat is negligible.

• Differential Mass and Enthalpy Balances:

Mass Balance

$$dL' = G' dH \qquad (13)$$

Enthalpy Balance

$$L' c_{pL} dT_L = G' dH_v \qquad (14)$$

or

$$L'c_{pL}dT = G'(c_sdT_g + \lambda_odH)$$

L' and G' are superficial mass velocity: $Kg/(hr m^2)$; G' represents the superficial mass velocity of the dry air stream.

COUNTERCURRENT ADIABATIC OPERATION: WATER COOLING

L' and G' are constant, therefore eqn. (14) can be directly integrated between the sections 1 and 2 leading to:

$$L' c_{pL} (T_{L2} - T_{L1}) = G' (Hy_2 - Hy_1)$$
 (15)

If in eqn. (15) we replace the values (T_{L2},Hy_2) with the current values (T_L,Hy) we obtain:

$$L' c_{pL} (T_L - T_{L1}) = G' (Hy - Hy_1)$$
 (16)

The equation (16) defines the *operating line* in the plane (T_L, H_y) . From eqn. (16) it follows:

(slope operating line) =
$$-L'c_{pL}/G'$$

Evaluation of the Column Height

In order to calculate the height of the column we need to use the rate equations for heat and mass transfer.

COUNTERCURRENT ADIABATIC OPERATION: WATER COOLING (cont.)

From the enthalpy balance at the water-gas interface:

Sensible heat lost across the interface by the liquid phase = Sensible heat entering the gas phase plus the latent heat associated with the evaporating flux

FIGURE 10.5-1. Temperature and concentration profiles in upper part of cooling tower.

it follows (for details cf. Geankoplis, 1983):

$$G' dH_y = k_y aM_B (H_i - H) dz$$
 (17)

or:

$$G' dH_y = K_y a M_B (H^* - H) dz$$
 (18)

Equation (18) is equivalent to eqn. (17). K_y is the overall mass-transfer coefficient. K_y a and k_y a represent volumetric mass-transfer coefficients. a is the specific interfacial surface area (m^2/m^3)

COUNTERCURRENT ADIABATIC OPERATION: WATER COOLING (cont.)

Assuming that the volumetric mass-transfer coefficients K_ya and k_ya are constant along the column the integration of eqns. (16) and (17) leads to:

$$Z = \frac{G'}{k_{y} a M_{B}} \int_{H_{y1}}^{H_{y2}} \frac{dH_{y}}{H_{yi} - H_{y}}$$
(19)

and

$$Z = \frac{G'}{K_{y} \text{ a } M_{B}} \int_{H_{y1}}^{H_{y2}} \frac{dH_{y}}{H_{y} - H_{y}}$$

$$H_{OG} \qquad N_{OG}$$
(20)

Z: height of the column;

H_G: height of a gas enthalpy unit (m);

NG: number of gas enthalpy units (non-dimensional number);

HOG: height of an overall gas enthalpy unit (m);

 $N_{\hbox{\scriptsize OG}}:$ number of the overall gas enthalpy units (non-dimensional

number).

SUMMARY: DESIGN OF A PACKED COLUMN

Design Specifications: L, T_{L2} , T_{L1} , T_{g1} , H_1 , and H_{y1}

• Pick a value for the slope of the operating line:

- L is usually given \implies G = L c_{pL} /(1.2-1.5 G_{min});
- Pick Φ_t accordingly to one of the illustrated criteria (cf. pg. 12); use:

$$G' = \frac{G}{\pi (\Phi_t^2/4)}$$

• Calculate Z from eqn.(19) or (20).

De unidificarione

- o) parniale condensarione del vapore => Frasferimento di materia dal gas al liquido
- ·) raffreddamento del gas e riscaldamento del liquida

·) ifnotesi: DL' ~0 ovvero SL'/L' <<<1